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Abstract

Reconstructions of past climates in both time and space provide impor-
tant insight into the range and rate of change within the climate system.
However, producing a coherent global picture of past climates is difficult
because indicators of past environmental changes (proxy data) are unevenly
distributed and uncertain. In recent years, paleoclimate data assimilation
(paleoDA), which statistically combines model simulations with proxy data,
has become an increasingly popular reconstruction method. Here, we de-
scribe advances in paleoDA to date, with a focus on the offline ensemble
Kalman filter and the insights into climate change that this method affords.
PaleoDA has considerable strengths in that it can blend multiple types of
information while also propagating uncertainty. Drawbacks of the method-
ology include an overreliance on the climate model and variance loss. We
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conclude with an outlook on possible expansions and improvements in paleoDA that can be made
in the upcoming years.

■ Paleoclimate data assimilation blendsmodel and proxy information to enable spatiotemporal
reconstructions of past climate change.

■ This method has advanced our understanding of global temperature change, Earth’s climate
sensitivity, and past climate dynamics.

■ Future innovations could improve the method by implementing online paleoclimate data
assimilation and smoothers.

1. INTRODUCTION AND MOTIVATION

With current atmospheric CO2 concentrations at levels not seen in at least 3 million years, we now
live in a climate that is fundamentally different from the preindustrial state.While climate models
can be used to simulate changes in the Earth system under high CO2, they are typically tuned to
and evaluated against the recent historical climate and may not produce reliable results outside of
that range (e.g., Zhu et al. 2020). Reconstructions of past climates are therefore one of the best
tools for understanding how Earth’s climate system behaves under radically different forcings
(Tierney et al. 2020a). In particular, spatially complete paleoclimate reconstructions, also known
as climate field reconstructions (CFRs) (Evans et al. 1998), are crucial for constraining a number
of aspects of the Earth system. They can identify the spatial imprint of internal climate variability
(Wise 2016, Emile-Geay et al. 2020) and forced change (Fernández-Donado et al. 2013,Marvel &
Cook 2022) and quantify how warming patterns affect critical metrics such as equilibrium climate
sensitivity (ECS) (Cooper et al. 2024). However, the geological indicators of past climate—proxy
data—used in CFRs are not evenly distributed in time or space. Each type of proxy also has its own
set of strengths and limitations, including seasonal biases and temporal resolution. Any method
for developing a CFR therefore needs to be able to use a sparse network of uncertain proxy data
to estimate a complete climate field.

The challenge of producing a CFR from a sparse network of proxies is not new (Fritts et al.
1971,Webb&Bryson 1972), andmany different methods exist (Tingley et al. 2012, Smerdon et al.
2023). Early CFR approaches were anchored in principal components and canonical correlation
analysis, which reduce both the predictors (the proxies) and the predictand (the climate field) into
a few leading spatiotemporal modes of variance whose time series can then be used in least squares
regression (Fritts et al. 1971,Cook et al. 1994).Objective analysis and optimal interpolation meth-
ods, adapted from the techniques used to produce gridded products such as historical sea surface
temperatures (SSTs) (Kaplan et al. 1997), have been used to generate CFRs on both recent (i.e., last
millennium) (Evans et al. 2002) andmore ancient (Gill et al. 2016,Tierney et al. 2019a) timescales.
Similar to earlier methods, these approaches isolate a few leading modes of climate variability to
project proxy information in space but can explicitly incorporate errors in the proxy-climate cali-
bration and the representation of the modern climate field. These approaches are efficient, linear,
and unbiased (Evans et al. 2001); however, the spatial covariance patterns used to broadcast the
sparse proxy data into a continuous climate field are estimated from the modern climate state.
Patterns of climate variability are almost certainly different on longer geological timescales, espe-
cially when Earth’s boundary conditions (ice sheets, continental positions, topography, sea level,
radiative forcing, etc.) change.

Another class of CFR uses Bayesian hierarchical modeling (BHM) (Tingley & Huybers 2010,
2013;Werner et al. 2018; Ossandón et al. 2024). BHMs offer several advantages: They can include

24.2 Tierney et al.
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PROXY SYSTEM MODELS

Proxy system models (PSMs) describe the processes and uncertainties that link the proxy values measured in the
lab back to the environmental information that they encode (Evans et al. 2013). They are forward models in
the sense that the environment predicts the proxy outcome [as occurs in nature; i.e., proxy∼ f (climate)], rather than
the other way around (i.e., inverse methods). PSMs vary considerably in their complexity and degree of sophistica-
tion, ranging from simple statistical regressions to complex mechanistic models with multiple levels. A multi-level
PSM might first describe how the sensor (e.g., foraminifera) is responding to environmental variables (e.g., seawa-
ter temperature and δ18O) and then describe how what was recorded (δ18O of the foraminifera) is affected by the
archive (e.g., bioturbation in a sediment core).

PSMs are ideally suited for paleoclimate data assimilation because they can be used as the observational operator
HXprior to create estimates of proxy values (Ŷ). This enables an apples-to-apples comparison between the proxy and
the model data by allowing Ŷ (e.g., δ18O of the foraminifera) to be calculated (or forward modeled) using multiple
different prior climate fields (e.g., sea surface temperature, δ18O of seawater).

an explicit model for spatial covariance rather than assuming stable or modern patterns of covari-
ance, facilitate complete uncertainty propagation, and accommodate proxy systemmodels (PSMs)
(see the sidebar titled Proxy SystemModels) (Tingley&Huybers 2010,Tingley et al. 2012).How-
ever, BHM spatial covariance models have thus far been Gaussian and isotropic, which can be
insufficient for capturing anisotropic behavior in the climate system (for example, from ocean dy-
namics or topography). In addition, BHMs can be computationally intensive because they involve
inversion with Markov-Chain Monte Carlo methods (Tingley & Huybers 2010).

The application of these and other CFR techniques (Schneider 2001, J. Wang et al. 2014,
Smerdon et al. 2023) generated several methodological dilemmas: At what distance should a proxy
be able to influence the reconstructed climate field (cf. Cook et al. 1999)? How should errors,
uncertainties, and biases in the proxy data be incorporated? How should the covariance of the
climate field be quantified?What methods should be used to project proxy information across the
target climate field? These choices, as well as the covariance of the underlying climate target, can
meaningfully influence important features of the resulting reconstructions (Smerdon et al. 2011,
Dannenberg & Wise 2013,Wang et al. 2015).

Paleoclimate data assimilation (paleoDA) provides an alternative solution to the problem of
estimating past spatiotemporal climate variability by blending proxy information with climate
model simulations. In the paleoDA framework, model simulations are used as a starting point,
or a prior in Bayesian parlance, for the past climate. The proxy information is then added to the
prior (assimilated), weighted by proxy uncertainty, the prior model spread, and the covariance
patterns in the model simulations. Like BHMs, paleoDA is easily integrated with PSMs, but it is
more computationally efficient. It also uses model simulations of the past climate state, rather than
modern (observed) climate data, to estimate spatial covariance, which is an advantage for CFR on
longer geological timescales when the glacial extent, greenhouse gas concentrations, and position
of the continents were different from today.

In this review, we explain the mechanics of paleoDA and discuss some applications that have
enabled advances in paleoclimate in recent years. We focus on the offline ensemble Kalman filter
(EnKF) method, which has emerged as a leading approach in the past decade. However, other
approaches, including particle filters, played an important role in the development of paleoDA
(Van Leeuwen 2009, Goosse et al. 2010, Dubinkina et al. 2011), and online methods continue
to gain traction (as discussed in Section 5). We also discuss the challenges and limitations of the
offline EnKF method that have been made apparent as paleoDA has become more widely used,

www.annualreviews.org • Paleoclimate Data Assimilation 24.3
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Climate model

Prior state Proxy
system
models

Proxy observation estimate
Proxy–model difference

(innovation)

plus errors

Online DA

Model
covariances 

Posterior state

Kalman gain

Xprior

Xposterior

Ŷ = Xprior Y – Ŷ

Paleoclimate
data

Figure 1

Overview of paleoDA. Climate models provide the initial estimate of the state (Xprior), which is then mapped into an estimate of the
proxy (Ŷ) by proxy system models. Ŷ is compared to the actual proxy values Y with the difference representing the new information
(the innovation) added to the reconstruction. The Kalman gain incorporates the new information into the model prior using the model
covariance structures and weights the update by the uncertainties in Y and Ŷ. This review focuses on offline paleoDA, but in online
applications (discussed in Section 5), the posterior state feeds back into the climate model, so the model can react to the data update.
Abbreviation: paleoDA, paleoclimate data assimilation.

and we conclude by highlighting possible improvements and extensions to paleoDA that can be
made in the future.

2. ELEMENTS OF THE METHOD

Here we review the mathematics and components of the offline EnKF method (Figure 1), fol-
lowing the methodology introduced by Steiger et al. (2014). We begin with the overarching
equations and then discuss each ingredient of paleoDA and some key considerations.

The goal of paleoDA is to combine an ensemble of modeling simulations (the model prior)
with paleoclimate data (from particular locations and times) to produce a posterior ensemble that
blends the two sources of information.We start with the classical update equation for the Kalman
filter (Kalnay 2003):

xa = xb + K( y− Hxb ). 1.

In this setup, xb is the prior (background) state and xa is the posterior (analysis) state; both con-
tain all the climate fields to be updated collapsed into a vector. y represents the observations to
be assimilated, and H is an observation operator that maps xb to observation space so that the
two can be compared. In paleoDA, y represents proxy information, and H contains PSMs. The
difference between the observations and prior estimate of them ( y− Hxb ) is called the innovation
and represents the new information being added to the prior state. This information is weighted
by the Kalman gain K:

K = cov(xb,Hxb )[cov(Hxb,Hxb ) + R]−1. 2.

24.4 Tierney et al.
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The first term of the Kalman gain, cov(xb,Hxb ), describes the relationship between the prior and
the observational estimate (in our case, proxy estimates). This term spreads the information from
the observations across the different fields in the model prior according to the covariance. The
second term, [cov(Hxb,Hxb ) + R]−1, represents error in the prior estimate of the observations
(Hxb) and in the actual proxy data (R).

Because paleoDA applications usually begin with an ensemble of model prior states, we rewrite
these equations slightly for updating a prior matrix rather than a vector. For clarity, we call the
priorXprior and posteriorXpost, and we refer to the estimate of the proxy values from PSMs as Ŷ:

Xpost =Xprior + K(Y − Ŷ),

K= (M − 1)−1XpriorŶ⊤
[
(M − 1)−1ŶŶ⊤ + R

]−1
. 3.

In this matrix version of the update equation, Xprior is the model prior matrix of size N × M,
which consists of all the model fields to be updated by the data assimilation (e.g., 2D fields such
as surface air temperature) concatenated into a single dimension N for each M model ensemble
member. Xpost, the posterior matrix, has the same dimensions. Y is the proxy data matrix of size
P × M. Proxy data are usually a vector of data at a set of particular locations, so they are tiled
M times to match the dimensions of Ŷ. Ŷ is the proxy estimate matrix of size P × M, which
is computed from the model prior at the proxy locations using PSMs. The multiplication by
(M − 1)−1 is to gain an unbiased estimate. The Kalman gain dimensions are N × P.

Following Whitaker & Hamill (2002), the update equation is solved by decomposing it into
solutions for the mean value and the deviations from the mean:

Xpost =Xprior + K(y − Ŷ) and

X′
post =X′

prior − K̃Ŷ′, 4.

where K̃ is

K̃ = (M − 1)−1XpriorŶ⊤
[√

(M − 1)−1ŶŶ⊤ + R
−1

]⊤ [√
(M − 1)−1ŶŶ⊤ + R +

√
R

]−1

. 5.

The full assimilated ensemble is then recovered through

Xpost = Xpost + X′
post. 6.

The posterior ensemble has dimensions N × M, like the prior model ensemble. The matrix
dimensions above are illustrated by King et al. (2023b).

2.1. The Model Prior

In ensemble paleoDA, the assimilation begins with Xprior, a prior estimate of plausible climate
states for the time period of interest derived from model simulations. Ideally, the distribution of
Xprior should encapsulate all the uncertainties in our prior knowledge about the climate system
during the time period of interest, including internal climate variability, model bias, forcings, and
boundary conditions. If Xprior is too narrow (insufficient variance), it constrains the data assimi-
lation system’s ability to integrate new information from the proxies: The covariance (XpriorŶ⊤)
is lower, leading to an underestimate of the Kalman gain, K, and therefore a smaller update by
the proxy data (Equation 3). Conversely, if the variance of Xprior is too high, the innovation from
Y will be overweighted. Both scenarios result in a posterior state, Xpost, that does not optimally

www.annualreviews.org • Paleoclimate Data Assimilation 24.5
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blend information from the proxies and the climate model. Moreover, incorrect variance in Xprior

also leads to an inaccurate estimation of the variance in Xpost, resulting in either overconfidence
or excess uncertainty in the reconstructed climate state.

Constructing an appropriately varied Xprior for paleoDA depends on the research question and
time period of interest. During the Common Era, internal climate variability and model biases are
the largest sources of uncertainty in spatial and seasonal patterns of simulated climate variability
(Goosse et al. 2005, Deser et al. 2012). PaleoDA reconstructions for this period typically employ a
stationaryXprior, consisting of the same ensemble (of annual or seasonal averages) randomly drawn
from Coupled Model Intercomparison Project (CMIP) last millennium simulations for each time
step (e.g., Hakim et al. 2016, Tardif et al. 2019, King et al. 2021). This method effectively samples
the range of internally driven climate variability, and because the prior is identical for each time
step, the proxy data drive the temporal structure of the reconstruction. If the prior consists of a
single model, the reconstruction will inherit that model’s covariance structures, including its biases
[i.e., extent of the tropical Pacific cold tongue, double Intertropical Convergence Zone (ITCZ)
(Amrhein et al. 2020)].The use of multiple climate models withinXprior can help with this problem
by capturing variance associated with different climate model physics, improving reconstruction
skill (Parsons et al. 2021,Eswaran et al. 2024).Note however that usingmultiplemodels is typically
an ad hoc way of representing structural model uncertainties and may underrepresent errors that
are common across model architectures.

Constructing a Xprior that captures the magnitude and uncertainty of forced climate variability
is essential on longer geological timescales (thousands to millions of years), over which changes
in Earth’s orbit, ice sheet and continental configurations, and greenhouse gas concentrations alter
seasonal and spatial covariances. On these timescales, uncertainties in boundary conditions and
model physics are the largest sources of variance (e.g., Kageyama et al. 2021, Thompson et al.
2022, Zhu et al. 2022). An ideal Xprior would consist of a multi-model ensemble of simulations
that sample multiple possible boundary conditions, but this represents a substantial computa-
tional endeavor, and so such an ensemble rarely exists. As a result, longer timescale applications
of paleoDA often rely on smaller Xprior ensembles drawn from simulations from a single cli-
mate model run with varied boundary conditions (e.g., Osman et al. 2021, Tierney et al. 2022,
Judd et al. 2024) or on multi-model ensembles run with a single set of boundary conditions (e.g.,
Annan et al. 2022). For transient estimates of Earth’s climate across fundamentally different cli-
mate states [e.g., Last Glacial Maximum (LGM) to present], constructing a Xprior that evolves
through time using a running window provides a rough approximation of evolving covariance
relationships [e.g., 4,000–5,000 years (Osman et al. 2021, Erb et al. 2022)] but can still result in
unrealistic artifacts (e.g., simulations run with a Laurentide ice sheet are included in Xprior during
the mid-Holocene). Another limitation of paleoDA on longer timescales is that the time step rep-
resented by the model prior and the proxy data are rarely equivalent. For example, reconstructing
average LGM climate involves proxy data that span 4,000 years of time (23–19 kyr), yet the model
priors are not run for 4,000 years (Tierney et al. 2020b). As a compromise, climatologies computed
over 50–100 years can be used as model prior states, under the assumption that multidecadal-to-
centennial climate variability in the model is equivalent to millennial-scale variability (Tierney
et al. 2020b, Osman et al. 2021). As the diversity, number, and length of paleoclimate simulations
continue to grow, constructing varied and representative Xprior for paleoDA on longer geological
timescales will become more feasible.

2.2. The Proxy Data and Their Uncertainty

Broadly speaking, data assimilation was designed to incorporate observational information into
models in order to improve simulations and forecasts. In paleoclimate applications, the purpose

24.6 Tierney et al.
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of DA is to incorporate proxy information to improve our reconstruction of past climate over what
model simulations can achieve alone. One of the advantages of the paleoDA framework is that, in
theory, the proxy data Y enter into reconstruction as is, while the understanding of how the proxy
data represent climate information is encoded in Ŷ (see the next section). In practice, this might
not always be the case if certain proxy uncertainties cannot be easily included in Ŷ. One of these is
time uncertainty, i.e., the uncertainty in the date or span of time represented by the proxies. Aside
from annually resolved records from tree rings (and other cross-dated archives with annual bands),
all proxy archives have time uncertainty associated with the method of dating used, ranging from a
few years for layer-counted archives such as corals and varved sediments to decades to centuries for
radiocarbon-dated sediments and 1,000–100,000 years or more on longer geological timescales.
If this uncertainty is larger than the target time step of the paleoDA, it should be accounted for
in the process, ideally as part of the archive-level component of a PSM. However, in a transient
reconstruction, the dating ofYmight affect which time step of the DA a proxy appears in, in which
case the time uncertainty has to be applied to both Y and Ŷ. A Monte Carlo sampling process can
be used to sample age model uncertainty and then conduct an ensemble of paleoDAs with the
elements of Y falling into various different time steps accordingly (Osman et al. 2021).

The proxy uncertainty appears in the Kalman gain as the covariance matrix R and determines
how much weight to ascribe to any given proxy estimate (Equation 3). Proxy data with high R
values have a smaller Kalman gain and thus have less influence on the reconstruction than those
with low values. In classical weather and climate data assimilation,R is the observational error, i.e.,
the error associated with the measurements. In paleoDA, laboratory measurement error of a proxy
is one, but not the only, component of R.R also includes random uncertainties that a proxy might
experience in the natural environment. Ideally, structural uncertainties such as those associated
with bioturbation or diagenesis can be encoded in Ŷ, but if this is not possible, then these sources
of uncertainty can be represented in R as well.

While measurement error is easy to quantify, the actual environmental error of a proxy is often
poorly constrained. As an example, consider a record of alkenone UK ′

37 (a proxy for SST) measured
in a marine sediment core, at a single location, that spans the LGM to present. Suppose the record
indicates that the glacial time was 1.5°C cooler than the present day. The laboratory uncertainty
of the record is known to be 0.006 UK ′

37 units (1σ), which translates to about 0.2°C. The error
on the calibration model (used in Ŷ) for UK ′

37 to SST is 1.4°C (1σ), but if this were the error on
the downcore record, the entirety of the glacial/interglacial structure would be subsumed by it.
Clearly, the true error lies between these extremes, but what is it?

To determine a true R experimentally, one would need to measure UK ′
37 in multiple sediment

cores from approximately the same location (and also know a good deal about the depositional
process of the alkenone compounds at that location). This is not commonly done, so another
method is needed to inform the choice for R. One approach is to experiment with different values
within a feasible prior range and do either internal or external validation tests to find a value that
performs the best (Tierney et al. 2020b,Osman et al. 2021).However, thismethod is indirect rather
than process based, and therefore it is not guaranteed to yield a realistic value. In applications
where proxy data overlap with historical climate data,R might be estimated through comparison
of real and PSM-simulated proxy data (King et al. 2021). In all paleoDA applications, ambiguity
in setting R remains a challenge and a clear area for improvement alongside the development of
more accurate PSMs, as discussed next.

2.3. Proxy Estimation

The blending together of proxy records andmodel simulations in paleoDA requires the conversion
of model-derived climate variables into equivalent proxy-based units (Ŷ). This is done through the

www.annualreviews.org • Paleoclimate Data Assimilation 24.7
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use of PSMs (see the sidebar titled Proxy System Models) for each respective proxy type. PSMs
take climate variables [e.g., SST, sea surface salinity, the oxygen isotopic composition of seawater
(δ18O)] from themodel prior state ensemble (Xprior) and translate these into proxy units that can be
compared directly with the observed proxy values in the innovation calculation (see Equation 3).

An ideal PSM captures all processes that control the proxy signature, including the preservation
of the proxy response in natural archives (see the sidebar titled Proxy SystemModels). Practically
speaking, not all of these processes are well-constrained, and some of them can be difficult to
formulate into mathematical expressions. As a consequence, PSMs range in complexity from rel-
atively simple regressions (e.g., Thompson et al. 2011, Tierney & Tingley 2018) to multivariate,
layered process models (e.g.,Treble et al. 2019) based on the level of available knowledge.Depend-
ing on the timescale and the location of the proxy, greater complexity is not always better, either
because required model parameters might be unknown and/or because small-scale uncertainties
are swamped by larger climatic signals (Hu et al. 2021).

Relative to conventional inverse models, wherein climate variables are statistically inferred
from proxies, PSMs offer a clear advantage in that they can account formultiple climatic influences
and nonstationarity in proxy responses, as well as provide straightforward error propagation. For
example, rather than having to assume a fixed season of production for planktic foraminifera (that
encode the SST proxies δ18O or Mg/Ca), a PSM can predict a dynamically changing seasonality
based on when modeled monthly SST suggests favorable conditions for each species (Malevich
et al. 2019, Tierney et al. 2019b). Similarly, whereas the changing relative influence of multi-
ple climatic or environmental influences (e.g., temperature versus rainfall on tree ring width) on
a proxy through time can complicate inverse frameworks, PSMs can more naturally accommo-
date nonlinear shifts in proxy sensitivity in order to generate a plausible range of Ŷ values (e.g.,
Tolwinski-Ward et al. 2011).

Models that incorporate tracers that help close the gap between climate metrics and proxy
units greatly simplify both the formulation and application of PSMs. In particular, simulations
that include the stable isotopologues of water (e.g., 1H2

16O, 1H2H16O, 1H2
18O) in all parts of the

water cycle are very useful for paleoDA.Many paleoclimate proxies encode water isotope changes
(e.g., speleothem and foraminiferal calcite δ18O, leaf wax δ2H), but water isotopes in and of them-
selves are complex tracers of multiple physical processes in the climate system (Bowen et al. 2019).
These processes are arguably best represented by the complexity of the climate model, rather than
computed as part of a PSM offline. In addition, in the paleoDA context, an update in isotope space
propagates accordingly to all of the underlying related climatic fields (e.g., temperature, humidity,
rainfall source, convection, winds), providing a powerful means of inferring climate variables for
which we have no direct proxies (but that strongly influence isotopic changes).

Currently, only a limited number of modeling centers run climate model simulations with wa-
ter isotopes. This severely restricts the number of models and simulations available to include in
an isotope-enabledXprior, which more often than not is desirable given the quantity of proxies that
encode water isotopes (Tierney et al. 2020b,Osman et al. 2021, Judd et al. 2022).More widespread
incorporation of water isotope tracers across different model families would be beneficial for
paleoDA applications, as well as CFRs more generally.

2.4. The Kalman Gain and Localization

As described at the beginning of Section 2, the Kalman gain (K) both spreads and weights the new
information coming from the assimilation of the proxies (Y − Ŷ; the innovation) as it is added to
the prior state. The weighting is based on the proxy error R (Section 2.2) and the variance of the
estimates, Ŷ—more uncertain proxies or proxy estimates impart a weaker update. The spreading

24.8 Tierney et al.
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comes from the first term of the Kalman gain, which is a covariance calculation between Ŷ and the
prior state (Xprior). Locations and climate variables in Xprior that have strong covariance with the
proxy estimate get updated more strongly than those for which this is not the case. As a practical
example, consider an SST proxy in the eastern equatorial Pacific. On the interannual timescale,
this proxy will have a strong covariance with SSTs in the western Pacific warm pool due to the El
Niño–Southern Oscillation (ENSO), as well as remote covariances with SST off the California
coast. Addition of proxy information at this location will therefore update these regions with high
covariance more strongly than places that are less influenced by El Niño (e.g., the North Atlantic).

While there are modes of climate variability (such as El Niño) that connect far-flung regions
of the globe, offline ensembles may have spurious covariance patterns that can introduce errors
into the reconstruction.Covariance localization is a technique applied in DA that limits the spatial
extent of the update provided by any given observation in order to mitigate these errors. In the
context of the joint update equations described above, localization applies a set of weights to the
Kalman gain, as follows (Hamill et al. 2001):

K = Wloc +
[
(M − 1)−1X′

priorŶ
′⊤

]
×

[
Yloc +

[
(M − 1)−1Ŷ′Ŷ′⊤

]
+ R

]−1
. 7.

Wloc contains the localization weights of each N state vector element relative to each proxy esti-
mate in Ŷ and is of dimensionN× P.Yloc contains the localization weights of each proxy estimate
in Ŷ relative to the other estimates in Ŷ and thus is of dimension P × P. M is the number of
ensemble members, and multiplication by (M − 1)−1 is applied to obtain an unbiased estimate;
+ denotes element-wise multiplication. The weights define the shape and extent of decorrelation.
A commonly used functional form for the weights is the Gaspari-Cohn fifth-order polynomial
(Gaspari & Cohn 1999), which produces a Gaussian-like isotropic region of decorrelation away
from each proxy location. The cutoff radius assigned to the polynomial is the distance outside of
which all covariance is eliminated.

The localization cutoff radius is a user choice, and the appropriate distance varies depending on
the prior ensemble, the target fields in the analysis, the proxy network, and the origin of covariance
errors. In modern DA applications, localization primarily serves to mitigate covariance sampling
errors arising from small numbers of prior ensemble members. By contrast, in offline paleoDA,
where it is easier to have a large prior ensemble, the primary benefit is that it mitigates covariance
bias in the model prior (Amrhein et al. 2020, Parsons et al. 2021). Because Gaspari-Cohn local-
ization imparts isotropic spatial covariance on the solution, sparse proxy networks may require
longer cutoff radii (or no localization) to avoid the appearance of undesirable circular blotches in
the update (Figure 2). Typically, paleoDA applications have used longer localization radii [e.g.,
12,000–25,000 km (Tardif et al. 2019, Tierney et al. 2020b, Osman et al. 2021)], although some
have used radii as small as 5,000 km (Annan et al. 2022, Masoum et al. 2024). Validation exercises
(e.g., King et al. 2021) provide one approach for determining optimal localization radii for a given
problem, as described in the next section.

2.5. Methods of Validation

Validation is a key component of any type of CFR. It acts as a reality check on whether the re-
construction is yielding reasonable results, provides information beyond a naive baseline, and can
identify statistical overfitting. In the case of paleoDA, it is also an efficient way to evaluate whether
user-defined choices such as R and the localization radius are appropriate.

Internal validation typically involves iteratively leaving out one or more [some applications
with dense proxy networks have left out 25% (Tardif et al. 2019, Tierney et al. 2020b)] of the

www.annualreviews.org • Paleoclimate Data Assimilation 24.9
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Localization radius = 24,000 km Localization radius = 6,000 kma b

–2 –1 0

∆SST (°C)

1 2

Figure 2

Example of the impact of the localization cut-off radius on the update of a climate field, with a limited proxy network (N = 30). (a) The
change in SST (relative to the model prior mean) from the assimilation of SST proxy data (black points) with the localization radius set
to 24,000 km. Note how the updates propagate along dynamical features in the SST field. (b) As in panel a but with the localization
radius set to 6,000 km. Updates are more isotropic, with reduced spatial extent, following the Gaspari-Cohn function used to define the
localization weights. Proxy data are a decimated version of the network used by Tierney et al. (2025), assimilated with a multi-model
prior of mid-Pliocene simulations (Tierney et al. 2025). Abbreviation: SST, sea surface temperature.

proxy records from the assimilation and then predicting the omitted proxy data from the resulting
posterior (effectively a Ŷ calculation). Skill is assessed through metrics such as R2, the coefficient
of efficiency (Nash & Sutcliffe 1970), or root mean square error. Internal validation provides an
assessment of the internal predictability of the reconstruction and can inform baseline choices for
R and localization radius. However, as a relatively easy test, it may not conclusively distinguish
between different paleoDA parameter choices.

External validation is a much more powerful assessment of the skill of the reconstruction be-
cause it tests howwell the paleoDA posterior can predict an external (nonassimilated) proxy target.
Good targets for external validations are proxy systems that were not included in the assimilation
and/or proxies that are sensitive to a different aspect of climate than those used in the assimi-
lated proxy network. For example, both the LGM reconstruction of Tierney et al. (2020b) and the
LGM-to-present reconstruction of Osman et al. (2021) used water isotope–enabled model priors,
so they chose to validate their reconstructions against speleothem and ice core–derived δ18O of
precipitation (δ18Op). Because these studies only assimilated SST proxies and the δ18Op proxies
are on land, this is a difficult validation target. Nonetheless, both studies demonstrated that data
assimilation greatly improved prediction of δ18Op over the model prior, especially for the ice cores
(Tierney et al. 2020b, Osman et al. 2021). External δ18Op validation also helped refine choices for
R and localization; in the case of the LGM reconstruction of Tierney et al. (2020b), validation
improved when slightly lower values of R were used for the proxies than suggested by the PSMs,
indicating that perhaps the calibration models in the PSMs overestimate the error variance.

Another way to evaluate paleoDA’s capability to reconstruct climate fields is to use a pseu-
doproxy network (e.g., Steiger et al. 2014, Brennan & Hakim 2022, King et al. 2023a). In these
idealized experiments, a sparse array of pseudoproxy data (drawn from a climate model and then
run through a PSM) is used in the paleoDA scheme. The skill of the resulting reconstruction
is then assessed by comparing it with the climate model simulation used to generate the pseu-
doproxies. In a perfect model experiment, both the pseudoproxies (Y) and the prior ensemble
(Xprior) are drawn from the same climate model simulation, providing an upper bound on recon-
struction performance for a given proxy network. In imperfect model experiments, pseudoproxies
are drawn from one model and the Xprior from a different model. Imperfect model experiments

24.10 Tierney et al.
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are a stricter test of the method and more closely resemble real paleoDA reconstructions, which
rely on covariance estimates from model simulations that imperfectly represent Earth’s climate.

3. EXAMPLE APPLICATIONS

In this section, we review recent applications of paleoDA over different timescales and highlight
the advances in our understanding of the climate system the paleoDA method has afforded. A few
themes tie these examples together: (a) Diverse proxy types can be combined, (b) multiple climate
fields can be recovered, and (c) the full-field nature of the reconstruction enables more accurate es-
timates of first-order metrics of climate change, such as global mean surface temperature (GMST)
and ECS, defined as the GMST change in response to a doubling of CO2 concentrations once
fast feedbacks have occurred. A distinction among these examples that illustrates the flexibility of
offline DA is that Common Era reconstructions target transient variability (both forced and inter-
nal), whereas deeper-time applications typically use time-slice approaches that target long-term
time means.

3.1. Common Era Applications

The first and most common use of paleoDA has been to reconstruct the climate of the
Common Era. Goosse et al. (2010) used a particle filter paleoDA approach, assimilating a tradi-
tional gridded reconstruction (Mann et al. 2008) as if it were temperature observations. Since this
first paleoDA application, a number of Common Era reconstructions have been created on annual,
seasonal, and monthly timescales (e.g., Hakim et al. 2016, Franke et al. 2017, Steiger et al. 2018,
King et al. 2021).Commonly reconstructed climate variables include near-surface air temperature,
geopotential height, and hydroclimate indices such as the Palmer Drought Severity Index (PDSI).
This range of variables makes it possible to assess the dynamical causes of climate phenomena
throughout the Common Era. Below, we briefly highlight two representative examples.

King et al. (2023a) used offline EnKF paleoDA to reconstruct the Southern Annular Mode
(SAM) over the Common Era at annual resolution, extending prior DA work reconstructing the
SAM during the industrial era (O’Connor et al. 2021, Dalaiden et al. 2021). In this application,
the reconstruction target was an index of climate rather than a spatial field: the austral summer
SAM index P∗

40°S − P∗
65°S (Gong & Wang 1999), where P∗

X represents the normalized zonal mean
sea level pressure at X latitude, averaged from December to February. The model prior consisted
of the austral summer SAM index drawn from last millennium simulations conducted with four
different models [Community Climate System Model 4 (CCSM4), Community Earth System
Model (CESM) Last Millennium Ensemble (LME),Mac Planck Institute (MPI), and Meteorlog-
ical Research Institute (MRI)], so that different physical representations of the SAMwere sampled.
Multiple types of proxies were assimilated, including temperature-sensitive tree rings, corals, and
ice cores, as well as hydroclimate-sensitive drought atlas gridpoints (Figure 3a). The computation
of the posterior followed the same mathematics described in this review (Equation 3).

The King et al. (2023a) study found that the modern multidecadal positive trend in the SAM
(indicating movement toward Antarctica) is significantly outside the range of the past 2,000 years,
supporting the conclusion that this recent behavior is a response to anthropogenic climate change.
The paleoDA approach was advantageous for this reconstruction target for several reasons. First,
the DA framework allowed the assimilation of a range of diverse proxy types. Additionally, the
use of paleoDA circumvented the need to calibrate the reconstruction directly to an instrumental
SAM record. Prior to this work, all multi-century SAM reconstructions relied on such calibra-
tions, which implicitly assume the stationarity of the SAM’s teleconnections over the last few
decades (e.g., Dätwyler et al. 2018). Various studies cast doubt on the validity of this assumption

www.annualreviews.org • Paleoclimate Data Assimilation 24.11
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Figure 3

Examples of Common Era applications of paleoDA. (a) Reconstruction of the SAM Index and the proxy network used in the data
assimilation. Panel adapted from King et al. (2023a). (b) Mean climate states during megadrought and non-megadrought years (Steiger
et al. 2021) from composites of DJF SST and PDSI from PHYDA (Steiger et al. 2018). Individual panels show all years corresponding
to NASW megadrought conditions, SASW megadrought conditions, when megadroughts do not exist in either location (neither) and
when megadroughts exist in both locations (both). Temperature and PDSI data are anomalies with respect to the analysis period
1000–1925 CE. Abbreviations: ANZDA, Australia and New Zealand Drought Atlas; DJF, December–January–February; NASW, North
American Southwest; paleoDA, paleoclimate data assimilation; PDSI, Palmer Drought Severity Index; PHYDA, Paleo Hydrodynamics
Data Assimilation; SADA, South American Drought Atlas; SAM, Southern Annual Mode; SASW, South American Southwest; SST, sea
surface temperature.
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(Silvestri & Vera 2009, Gallant et al. 2013), and the nonstationarity of these teleconnections
remains a major source of uncertainty in non-DA reconstructions. By contrast, the approach of
King et al. (2023a) only requires the stationarity of proxy response to their local climate vari-
ables, a more conservative assumption that is typical of nearly all paleoclimate reconstructions.
Furthermore, the climate covariances derived for King et al. (2023a) rely on hundreds of years
of climate model output, reducing the potential sensitivity to anomalous decadal- or centennial-
scale variability. The reconstruction also made use of optimal sensors embedded in the paleoDA
framework (see Section 3.4). Finally, King et al. (2023a) also developed a method to address
spurious variance reduction due to declining proxy data back through time (see Section 4.2).

Another powerful use of paleoDA is to reconstruct the climatic conditions associated with
hydroclimate extremes. Prior to the use of paleoDA, hydroclimate reconstructions have been
limited to single-variable reconstructions, particularly PDSI. Interpreting these reconstructions
required analyzing independent model simulations that may or may not capture the features seen
in the reconstructions (e.g., Cook et al. 2007). But with paleoDA, both hydroclimate variables and
climate-dynamical variables can be reconstructed simultaneously. The dynamical variables can
then be used to directly diagnose the cause of hydroclimate extremes. The Paleo Hydrodynamics
Data Assimilation (PHYDA) (Steiger et al. 2018) is one example of a paleoDA product that simul-
taneously reconstructed both drought and temperature fields alongside indices of North Atlantic
variability, ITCZ location, and ENSO. This reconstruction used the CESM LME (Otto-Bliesner
et al. 2016) as its model prior and assimilated multiple types of proxies (tree rings, corals, ice
cores, speleothems, and lake sediments) using the offline EnKF approach described in this review.
Because the reconstructed fields and indices are all related through the climate dynamics of the
CESM model, PHYDA can be used to diagnose the drivers of patterns of temperature or hydro-
climate change. For example, Steiger et al. (2021) investigated the ocean dynamics associated with
severe megadroughts in both the North American Southwest and the South American Southwest
(Figure 3b). They found that there are a similar number of megadroughts in both locations and
that they occur simultaneously more often than would be expected by chance. These coupled
megadroughts were associated with strong and frequent La Niña conditions (Figure 3b).

3.2. The Last Glacial Maximum and Holocene

The LGM (ca. 23–19 ka BP) and the subsequent Holocene epoch have long served as benchmarks
for understanding the Earth system (CLIMAP Proj. Memb. 1976). The climate signals are large,
and changes in external forcings and boundary conditions (e.g., ice sheets, greenhouse gas concen-
trations, orbital configuration) are well-understood.There is also an abundance of both proxy data
(Kaufman et al. 2020, Tierney et al. 2020b) and model simulations (Brierley et al. 2020, Kageyama
et al. 2021, Snoll et al. 2024). For these reasons, this time period is well-suited for paleoDA climate
reconstruction.

Several past efforts have tackled the problem of optimally combining modeled estimates of the
LGM state with proxy observations, some of which have used paleoDA techniques (Gebbie &
Huybers 2006, Annan & Hargreaves 2013, Amrhein et al. 2018). Tierney et al. (2020b) revisited
the LGM reconstruction problem with an updated database of SST proxies and, in an advance
over previous work, incorporated Bayesian PSMs into the offline EnKF framework. This allowed
for the propagation of proxy uncertainties and seasonal biases into the posterior solution.This new
paleoDA reconstruction was used to refine our understanding of both how cold LGMGMSTwas
relative to the late Holocene (−6.1°C, 95% CI = −6.5 to −5.7°C) (Figure 4) and what ECS is,
based on the LGM (3.4°C, 95% CI = 2.4 to 4.5°C). The latter was a revision upward from older
estimates (e.g., Schmittner et al. 2011) and is more consistent with the modern consensus range

www.annualreviews.org • Paleoclimate Data Assimilation 24.13



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  C
am

br
id

ge
 U

ni
ve

rs
ity

 (
ar

-1
82

57
9)

 IP
:  

13
1.

11
1.

5.
16

1 
O

n:
 M

on
, 2

8 
A

pr
 2

02
5 

11
:3

6:
10

EA53_Art24_Tierney ARjats.cls March 25, 2025 11:1

Age × 103 (years BP)

–8

22 20 18 16 14 12 10 8 6 4 2 0

Age × 103 (years BP)
10 8 6 4 2–6

–4

–2

0

Tierney2020
Percentile (%)

HadCRUT5

Heinrich 1

–10

0

10

Younger Dryas Early Holocene

Heinrich 1 Younger Dryas Early Holocene

–0.5

0

0.5

1.0

–1.0

LGMR (reanalysis)
Temp12k (reanalysis)
LGMR (proxy-only)
Temp-12k (proxy-only)
TraCE-21k (model)

∆SAT (°C)

∆
G

M
ST

 (°
C)

∆
G

M
ST

 (°
C)

5–95 5010–90 20–80 30–70 40–60

Figure 4

Reconstruction of surface temperatures since the LGM featuring the LGMR (Osman et al. 2021). GMST changes are shown as
anomalies relative to the last two millennia of the Holocene. Yellow triangles indicate the respective timings of the three spatial patterns
shown at top. Tierney2020 denotes the assimilated 1GMST range from Tierney et al. (2020b) spanning 23–19 ka. (inset) The time
series, at right, have 1,000-year smoothing applied for intercomparison; Temp12k (proxy-only) is from Kaufman et al. (2020), Temp12k
(reanalysis) is from Erb et al. (2022), and the transient LGM-to-present model simulation TraCE-21k is from Liu et al. (2014).
Figure adapted from figures 2 and 4 of Osman et al. (2021). Abbreviations: GMST, global mean surface temperature; HadCRUT5, Met
Office Hadley Centre/Climatic Research Unit global surface temperature anomalies, version 5; LGM, Last Glacial Maximum; LGMR,
Last Glacial Maximum Reanalysis; SAT, surface air temperature; Temp12k, Temperature 12k; TraCE-21k, Transient Climate Evolution
of the last 21,000 years.

(Sherwood et al. 2020). It directly contributed to a narrower ECS assessment in the Intergovern-
mental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) [compared to the IPCC
AR5 (Forster et al. 2021)], highlighting how paleoDA has provided constraints on a key climate
metric.

Osman et al. (2021) extended the results of the study by Tierney et al. (2020b) to reconstruct
surface temperature changes from the LGM to the present (Figure 4). This study used simi-
lar paleoDA methodologies but with some new innovations including a Monte Carlo method to
account for age uncertainty and an evolving prior to accommodate shifts in climatic states and
associated model boundary conditions spanning the last glacial to interglacial transition. The re-
sulting reconstruction, the Last Glacial Maximum Reanalysis (LGMR), allowed for investigation
of the spatial imprint of themain drivers of LGM-to-present climate (ice sheets, greenhouse gases,
oceanic thermohaline circulation, and seasonal insolation). Because the LGMR provides a robust
estimate of GMST,Osman et al. (2021) were able to show that the rate and magnitude of modern
anthropogenically driven warming are highly unusual in the context of the past 24 kyr.

PaleoDA reconstructions of the Holocene, including the LGMR and the Erb et al. (2022)
Temp12K reanalysis, have advanced understanding of theHolocene temperature conundrum (Liu
et al. 2014), which refers to the discrepancy between mid- to late-Holocene global temperature
trends from proxy-based reconstructions (which show a cooling) (Marcott et al. 2013, Kaufman
et al. 2020) and transient climate model simulations (which show a warming) (Liu et al. 2014,

24.14 Tierney et al.



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  C
am

br
id

ge
 U

ni
ve

rs
ity

 (
ar

-1
82

57
9)

 IP
:  

13
1.

11
1.

5.
16

1 
O

n:
 M

on
, 2

8 
A

pr
 2

02
5 

11
:3

6:
10

EA53_Art24_Tierney ARjats.cls March 25, 2025 11:1

Erb et al. 2022). The warming trend through the Holocene produced by the models is expected
based on the changes in forcing agents (namely, a decline in land ice cover plus an increase in
greenhouse gases), which means the conundrum represents either a misunderstanding of proxy
seasonality or a missing forcing in the model simulations (Liu et al. 2014).

By taking a latitudinally weighted average of the SST proxy records used in the LGMR,Osman
et al. (2021) closely reproduced an older proxy-only reconstruction showing Holocene cooling
(Marcott et al. 2013) (Figure 4, inset). Similarly, a proxy-only reconstruction that combines ter-
restrial and marine proxies (Temp12K) shows a Holocene thermal maximum near 6.5 ka with a
cooling trend thereafter (Kaufman et al. 2020) (Figure 4, inset). However, when these same proxy
datasets are used in paleoDA, different trends emerge. In the LGMR case, the long-term cooling
becomes a small warming (Figure 4, inset) that resembles the Transient Climate Evolution of the
last 21,000 years (TraCE-21ka) model simulation (Liu et al. 2014) (Figure 4, inset). In the Tem-
perature 12k (Temp12K) case, the assimilated version shows no change in GMST since 6.5 ka
(Erb et al. 2022)(Figure 4, inset). In both cases, paleoDA moves the proxy-only solution closer to
the TraCE-21ka trajectory. For the Erb et al. (2022) reconstruction, this is expected because the
model priors include TraCE-21ka and a HadCM3 transient simulation, both of which produce a
Holocene warming trend. It is less expected for the LGMR because the model prior includes sim-
ulations that have both a colder and a warmer mid-Holocene [the latter due to imposing a Green
Sahara (cf. Thompson et al. 2022)]. Therefore, Osman et al. (2021) concluded that the LGMR
solution reflects the assimilation process: Unlike proxy-only reconstructions that rely on latitude-
weighted zonal averaging, paleoDA dynamically weights each proxy based on its uncertainties
and covariance with model priors, and also explicitly accounts for proxy seasonality. Although dis-
cussion around the conundrum continues (Bova et al. 2021, Thompson et al. 2022, Kaufman &
Broadman 2023, Essell et al. 2024), the results of Osman et al. (2021), Erb et al. (2022), and others
(Masoum et al. 2024) highlight the utility of paleoDA in contributing to an increasingly consistent
picture of LGM-to-present climate change.

3.3. Deep Time

Recent work has extended the application of paleoDA into deep geologic time, including exploring
spatial patterns in temperature and precipitation just prior to and during the Paleocene–Eocene
Thermal Maximum (56 Ma) (Tierney et al. 2022) and reconstructing a 485-million-year history
of Earth’s GMST (Figure 5a) ( Judd et al. 2024). Long-term records of GMST are rare and have
historically been based on either climate model simulations alone (Valdes et al. 2021) or analog
approaches based on modern climatic zones (Scotese et al. 2021). One of the challenges of deep-
time climate reconstruction is the decreasing availability of proxy data with increasing geologic age
( Judd et al. 2022), which effectively precludes reliable data-only spatial reconstruction. PaleoDA
thus offers a tractable solution that can leverage both model simulations and data, and advance
our understanding of long-term climate change.

The Phanerozoic Data Assimilation, or PhanDA, highlights several advantages and limits of
applying paleoDA in deep geological time.PhanDA combined 872HadCM3L simulations (Valdes
et al. 2021, Judd et al. 2024) and a database of over 155,000 SST proxy values ( Judd et al. 2022)
to reconstruct GMST at 85 time steps spanning nearly half a billion years (Figure 5a). The as-
similation of the proxy data substantially increased the temperature range of the posterior when
compared to the model prior, primarily by increasing GMST during greenhouse climate inter-
vals ( Judd et al. 2024). These results support an emerging consensus that the warmest climates in
Phanerozoic Earth history had a GMST of ca. 30–35°C (Inglis et al. 2020, Tierney et al. 2022).
Unlike model-only GMST reconstructions, PhanDA is independent from the climate sensitivity
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(a) Reconstructed GMST over the last 485 Myr using paleoDA ( Judd et al. 2024). (b) Relationship between atmospheric CO2
concentrations and reconstructed GMST over the same time interval (r = 0.72, p < 0.01), colored by geologic era. The dashed line
shows the York regression (York 1968) through the data, which yields a slope, or AESS of 7.7°C per doubling of CO2. Figure adapted
from Judd et al. (2024). Abbreviations: AESS, apparent Earth system sensitivity; GMST, global mean surface temperature; paleoDA,
paleoclimate data assimilation.

of the prior, enabling analysis of the long-term relationship between PhanDA GMST and the
CO2 record. CO2 and GMST are strongly correlated across the Phanerozoic (r= 0.72, p< 0.01),
particularly during the Cenozoic and Paleozoic eras (Figure 5b), indicating that CO2 has been a
dominant driver of climate across the last half-billion years. The slope of this relationship (when
CO2 is in log2 space) implies a change in GMST of 7.7°C ± 0.3°C per doubling of CO2—a
metric that the authors term the apparent Earth system sensitivity (AESS). While AESS is not
directly comparable with conventional estimates of ECS, it agrees well with CO2-only Earth sys-
tem sensitivity estimates from the Cenozoic (e.g.,Cenozoic CO2 Proxy Integ. Proj. (CenCO2PIP)
Consort. et al. 2023). The consistency of this relationship is surprising because solar luminosity
was lower during the Paleozoic (theoretically requiring higher CO2 levels to offset it), providing
a clear direction for future research.

One of the difficulties PhanDA highlights is the consequence of having a very wide prior. Un-
like paleoDA applications in shallow time, where factors such as CO2 concentration and ice sheets
are better constrained and Xprior can therefore be tailored within a more narrow range of realistic
conditions, there are large uncertainties surrounding boundary conditions in deep time. A wide
prior is therefore required to capture different possible states, but combining very different prior
states in the offline DA set up (i.e., with different ice sheet configurations or latitudinal SST gra-
dients) can yield aphysical posteriors, such as solutions that have unrealistically steep temperature
gradients between the middle latitudes and the poles ( Judd et al. 2024). To address this problem,
PhanDA was created by iteratively assimilating each time step, each time systematically draw-
ing from different subsets of the prior ensemble, with a screening protocol applied to filter out
dynamically infeasible results.

3.4. Optimal Sensors

In addition to reconstructing past climates, the Kalman filter can be adapted into an optimal sen-
sor framework. In paleoclimatology, optimal sensors are typically used to assess the proxy records
needed to skillfully reconstruct a climate metric and to prioritize locations for future proxy devel-
opment (Evans et al. 1998, Comboul et al. 2015). The optimal sensor method can also be used to
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assess the influence of individual proxy records on a paleoDA reconstruction, providing a level of
transparency not always possible for other CFR methodologies.

The paleoDA optimal sensor examines the relationship between sets of proxy records and a
climate metric, such as spatial mean temperature or a climate mode index. Specifically, the sensor
quantifies the ability of a set of proxy records to reduce variance in the climate metric’s posterior
ensemble. This assessment is applied to multiple sets of proxy records, allowing the sets to be
ranked by their ability to reduce uncertainty. The analysis follows the equation

1σk = (JŶ⊤
k )

2[ŶkŶ⊤
k + Rk]−1. 8.

Note the similarity to the equation for the Kalman gain (Equation 3).Here, J is the climate metric
(replacing Xprior). The k subscripts indicate values for a kth set of proxy records. Ŷk can be esti-
mates for a single proxy record or a set of multiple proxies. As a rule, any proxies with covarying
error statistics should be grouped into the same set. Note that the optimal sensor requires only
proxy estimates; it does not require actual proxy records. As such, the analysis may be applied to
extant proxy records and potential future sites alike. Note that the variance reduction computed
by the optimal sensor represents the maximum potential reduction. In practice, when a proxy set
is added to an existing network, the additional variance reduction will be smaller than this maxi-
mum potential. This occurs because most proxy records covary with one another, in part because
of their shared sensitivity to past climate, and this covariance is down-weighted by the Kalman
gain to avoid double-counting the same signal.

King et al. (2023a) applied this optimal framework to their SAM index reconstruction (see
Section 3.1) to examine how different proxy records influence the reconstruction over time. To
identify the records with the largest contribution to the reconstruction, the authors first assessed
the potential variance reduction for each proxy in the network (Figure 6). Because most records
were not available over the full reconstruction period, the authors applied the optimal sensor
to the available records for each reconstructed time step. They found that two tree-ring records
fromTasmania andNewZealand (Plateau Remote andMt.Read) were the most influential during
the early part of the reconstruction, whereas the drought atlases South American Drought Atlas
and Australia and New Zealand Drought Atlas dominated during the later interval when they
became available (Figure 6). Ultimately, the optimal sensor analysis in this study complements
the assimilation by providing insight into the controls on the reconstruction’s behavior and the
relative contributions from each proxy record.

4. CHALLENGES AND LIMITATIONS

PaleoDA is a powerful technique that has enabled discovery of Earth’s climate system across
multiple timescales. However, like all CFR methods, it has drawbacks. Here we highlight two
primary issues that have challenged offline EnKF paleoDA reconstructions, but other limitations
also exist, such as extremely sparse proxy networks (see Section 3.3) or the fact that the user must
choose (sometimes in an ad hoc manner) how to define the proxy error (R) (Section 2.2) and the
localization radius (Section 2.4).

4.1. Dependence on the Model Prior

PaleoDA explicitly assumes that the simulated covariance patterns of the model prior are the co-
variance patterns of the real climate system (K in Equation 3) that generated the proxy records.
This is not a safe assumption, however, because most models have substantial biases when com-
pared to historical observations (C.Wang et al. 2014). In offline DA, the covariance structures are
entirely inherited from the model prior, so any biases present in the model are present in the re-
construction. This adds substantial structural uncertainty to paleoDA reconstructions, which can
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Figure 6

Optimal sensor analysis adapted from King et al. (2023a). (top row) The maximum percent variance constrained by the drought atlases
[left, including the SADA (Morales et al. 2020) and ANZDA (Palmer et al. 2015)] and PAGES 2k records (right). (bottom row) Proxy sites
with the greatest influence in the early part of the reconstruction (left; 8–135 CE) and in the postindustrial era (right; 1848–1983 CE).
Abbreviations: ANZDA, Australia and New Zealand Drought Atlas; PAGES, Past Global Changes; SADA, South American Drought
Atlas.

be large in regions far from proxy observations where models disagree in their simulated dynamics
(Amrhein et al. 2020, King et al. 2021). As noted in Section 2.1, a multi-model ensemble can help
address this to some extent but may present practical challenges and/or still be inadequate. For
example, shared model biases in the tropical Pacific have been shown to affect data assimilation–
based reconstructions of the ENSO response to large volcanic eruptions (Sanchez et al. 2021).
Multi-model ensembles may be practically prohibitive due to the costs of running bespoke
simulations for time periods that do not correspond to experiments from the Paleoclimate Mod-
elling Intercomparison Project (e.g., past1000 for the period 850 to 1849 CE). As highlighted in
Section 2.3, model simulations that incorporate water isotopes facilitate the assimilation of
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isotopic proxy data, but many modeling groups do not include isotope tracers, which might ne-
cessitate the use of a single model for the prior. Thus far, the trade-offs between using an isotope-
enabled single model ensemble (Tierney et al. 2020b, Osman et al. 2021) versus a multi-model
ensemble that lacks isotopes (e.g., Annan et al. 2022, Erb et al. 2022) have yet to be systematically
explored.

4.2. Loss of Variance

A known issue of the offline Kalman filter is that changes to the size and composition of the
proxy network can artificially affect the temporal variability of the analysis ensemble (King et al.
2023a,b). As proxy records become sparse and/or more uncertain, the Kalman update is minimal,
and reconstructions will approach (or collapse toward) the prior mean. This tendency can affect
spectral estimates of past climate variability (Emile-Geay et al. 2025), which partition variance as
a function of frequency, as well as comparisons between modern and past climate states.

To understand this effect, consider a reconstruction using the same prior for each time step. In
the absence of proxy records, themean of the prior provides the best naive estimate of past climate.
Because each time step uses the same prior, the updated ensemblemean in this case will be constant
through time and will have no variance. Assimilating a single proxy record provides additional
information to the Kalman filter, and so the updated ensemble mean will begin to vary through
time. Each additional proxy record increases the updated ensemble mean’s ability to deviate from
the prior mean, and so the amplitude of the ensemble mean’s spectrum will increase with the size
of the proxy network. This variance effect is partly by design, as the prior mean provides the best a
priori estimate of past climate in the absence of additional information. In addition, a weak update
upon the prior mean will be accompanied by large uncertainty bounds (Figure 7), which allows
for the possibility of many climate trajectories. However, this effect presents a challenge for the
interpretation of different periods in a reconstruction through time.

The variance effect is even more insidious for spatial field reconstructions because the infor-
mation used to update each spatial point is modulated by the point’s covariance with the proxies
in the network. As such, points far from the proxy network may receive minimal information
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An example of the variance loss effect, with a toy time series and reconstruction. A synthetic autoregressive time series was reconstructed
using a progressively larger number of noisy samples, leading to increasing ensemble mean variance and decreasing uncertainty in time.
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and revert to the prior mean, whereas points close to the proxies in the network may receive siz-
able updates. Thus, different parts of the spatial field receive unequal updates, thereby potentially
breaking expected spatial structures.We note that the variance effect is a consequence of neglect-
ing the updated ensemble deviations and interpreting only the updated ensemble mean directly as
a time series or time-varying spatial field. The updated ensemble deviations should be considered
alongside the updated mean whenever analyzing climate phenomena from these reconstructions.

King et al. (2023a) provide an approach to resolving the variance issue analogous to one
used in non-DA reconstruction (Cook et al. 1999, Frank et al. 2007). This method uses multi-
ple frozen-network assimilations to assess the variance associated with different combinations of
proxy records. First, only proxy records that span the full reconstruction period are assimilated,
which provides a baseline time series whose variance is not affected by changes in the proxy net-
work.Next, the method identifies each unique set of proxy records used to update at least one time
step of the reconstruction. Each set is then assimilated over all time steps where it has recorded
values. The standard deviation of each assimilated set is then compared to the baseline standard
deviation to compute a ratio P for each set: P(set) σset/σbaseline. Each time step of the reconstruction
then gets assigned a scaling weight based on the set of proxies used: w(t) = P(set(t))/max(P). The
full reconstruction is then corrected for variance loss by multiplying its deviations from the prior
mean by the scaling weights for each time step. This ensures that each time step is normalized to
match the posterior variance associated with the full proxy network.

5. OUTLOOK

Offline EnKF approaches have been a leading tool for paleoDA over the past decade, but as dis-
cussed above, themethod has some inherent shortcomings.However, there are other options from
the pantheon of DA approaches developed over past decades, many of which have not yet been
explored in depth for paleoclimate reconstruction. One way forward is to use online DA. Offline
DA is simply a least squares approach informed bymodel covariances, and the climate model is not
allowed to react to the assimilation of the data. In contrast, online DA integrates a model through
time, and the model produces an adjusted forecast for each DA update step based on the proxy
data. Online methods have the potential to improve paleoDA for a variety of reasons. First, they
propagate innovations through time, so that improvements to the prior state are not restricted to
the time of an observation (say, a measurement of deep ocean temperature, which can contain in-
formation across decades and beyond because of long ocean memory). Second, online approaches
evolve prior covariances through time (known as the errors of the day in the weather literature)
and can naturally handle changing statistics in the model state and its uncertainty. Third, individ-
ual ensemblemembers are typically more physically consistent because their evolution is governed
by model processes. A data assimilation increment usually violates process relationships, including
conservation of mass and energy and radiative balance, but this is not corrected for in offline DA
because the model does not respond to the update.

There are several reasons why online DAmethods have only been used in a limited way in pale-
oclimate thus far. The first is the substantial computational cost of integrating a large ensemble of
models over paleoclimate timescales.Hence, online applications have typically used either models
of intermediate complexity (Goosse et al. 2010, 2012; Masoum et al. 2024) or statistical emulators
(Perkins & Hakim 2021). The basic idea of the emulator approach is that the spatial covariances
and time evolution of a complex climate model can be empirically estimated; this estimation can
then be used to forecast future states of the climate system based on the current state. For ex-
ample, linear-inverse models capture the linear dynamics of a system and have been widely used
in climate science to make, for example, operational forecasts of ENSO (Newman et al. 2009).
Linear-inverse models have so far been used in paleoDA for reconstructing large-scale climate

24.20 Tierney et al.
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phenomena that have strong interannual covariances, such as global mean temperature and upper
ocean heat content (Perkins & Hakim 2021).

A second reason online DA has not been widely used is that some studies have found that
it is of minimal added value for paleoclimate reconstruction, likely because the memory of the
atmosphere in particular is short and much smaller than the length of time represented by proxy
data (Matsikaris et al. 2015, Acevedo et al. 2017). However, recent work suggests that online DA
offers tangible benefits for ocean variables (Okazaki et al. 2021, Perkins & Hakim 2021), which
have longer memories. Additionally, the use of deep learning models is a recent and promising
advancement in online DA. Deep learning models can capture complex, nonlinear relationships
and have shown potential for future paleoDA applications by outperforming linear-inverse models
(Meng & Hakim 2024).

A second potential way forward for paleoDA is to incorporate smoothers, which spread in-
formation both forward and backward in time (Evensen 2009). Filters (which can propagate
observational information forward in time via model integration) are commonly used in weather
prediction, where the primary objective is to provide a set of initial conditions for a model
forecast. By contrast, reconstructing variability over a paleoclimate interval is fundamentally a
smoothing problem because observations can usefully constrain both future and past properties
of the state. One approach for an offline smoother is to reformulate the fundamental DA up-
date equation, Equation 3, to apply to both time and space instead of just space (e.g., Amrhein
et al. 2015); in this setup, one needs to specify time covariances in addition to the space covari-
ances of Equation 3. Online smoothers have been implemented using adjoint-based variational
approaches (commonly known as 4DVAR) for paleoceanographic applications (Dail & Wunsch
2014, Kurahashi-Nakamura et al. 2017, Amrhein et al. 2018) as well as using ensemble transform
Kalman filters (García-Pintado & Paul 2018).

6. CONCLUSIONS

Relative to more traditional paleoclimate reconstruction approaches that use simple spatial inter-
polation or averages of proxy time series to reconstruct regional or global phenomena, paleoDA
has clear advantages in terms of quantifying remote impacts, explicitly representing uncertainty,
directly accommodating PSMs and optimal sensors, and readily integrating large datasets. The
method has enabled a vast array of new observations about past climates, including increasing
quantitation of key metrics such as GMST and ECS, and spatial patterns of temperature and pre-
cipitation change. By combining information from proxies and paleoclimate model simulations,
paleoDA seeks to leverage the best of both worlds in order to improve past climate reconstruction.
The offline EnKF method is flexible in terms of its ease of application across multiple timescales,
but it does have limitations and drawbacks, several of which we have discussed.We anticipate that
future research will adapt newer techniques from the data assimilation and weather forecasting
community in order to continue optimizing how model and proxy data can be combined.
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