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Satellite observations1, ice core records2 and climate models3 
have revealed accelerating mass loss of the Greenland Ice Sheet 
(GrIS) during recent decades, as well as widespread thinning, 

receding and speeding up of Greenland’s marine-terminating outlet 
glaciers4. These glaciological changes directly contribute to global 
sea level rise5, impacting ocean overturning6 and marine ecosystems 
downstream7,8. Yet whereas such observations highlight the sensitiv-
ity of the GrIS to industrial-era Arctic warming9,10, especially across 
daily to interannual timescales3,4, little is known of the long-term 
(multidecadal to centennial) response of Greenland’s marginal envi-
ronments and its peripheral glaciers and ice caps (GICs) to climatic 
forcing. Given recent findings that GICs accounted for upwards of 
20% of Greenlandic ice losses during the early 21st century (despite 
encompassing less than 5% of the GrIS area11,12), it is important to 
reconcile such uncertainties by placing contemporary GIC observa-
tions into a longer-term perspective.

Naturally derived climate proxies offer the potential to extend our 
understanding of past GIC–climate coupling well beyond the satel-
lite era. However, existing records are limited in scope and, in many 
regions, provide conflicting information. Across the climatically 
sensitive coastal west Greenland (CWG) and northeastern Canadian 
Arctic regions (Fig. 1a), for example, recent studies using proglacial 
sediments13–15 and mosses15,16 have provided critical age constraints 
on the timing of GIC expansion during the previous two millen-
nia. These studies reveal intervals of glacier advancement during 
the Medieval Warm Period (MWP), a period of widespread relative 
warmth, as well as during the colder Little Ice Age (LIA). By assum-
ing that GIC growth primarily coincides with declining summertime 
temperatures, such findings have given rise to the notion that ‘para-
doxical’ (that is, relatively cool) climate conditions existed across 
CWG and northeastern Canada during the MWP13–15. However, evi-

dence from coeval temperature-specific proxy records from CWG 
lake and marine sediment core sites is inconclusive; results are either 
consistent16,17 or inconsistent18–20 with this suggestion depending on 
the particular record, location or proxy referenced (Extended Data 
Fig. 1). Such ambiguity, likely related in part to coarse proxy reso-
lution and imprecise dating (Extended Data Fig. 1), represents an 
outstanding limitation of our ability to understand the fundamental 
response of coastal Greenland GICs to long-term climate change.

In spring 2015 we recovered an ice core allowing for direct 
and internally consistent insights into coupled climate–GIC vari-
ability over the Common Era via its high-resolution history of 
past snow accumulation in CWG. Extracted from a cold-based, 
high-elevation ice cap perched atop the Nuussuaq Peninsula, west 
Greenland (70.49° N, 52.26° W, ~2,010 metres above sea level), the 
‘NU’ record is, to our knowledge, the only continuous and pre-
cisely dated (Methods) millennium-scale ice core from the west-
ern Greenlandic seaboard (Fig. 1a), rendering it well suited for 
re-evaluating pre-observational coastal climate and glacial variabil-
ity. Here, we describe the methodology used to date the NU core, 
including use of an observationally constrained ice strain inversion 
method developed herein allowing for our reconstruction of past 
snow accumulation. Using this record, we explore the influences 
underlying CWG hydroclimate variability and GIC growth, high-
lighting the first-order influence of regional surface temperatures 
on coastal snowfall changes.

Core dating and ice strain inversion
The NU ice core was drilled to a depth of approximately 138 metres 
below the surface, shy of bedrock at a location marginally downslope 
of the ice cap summit (Fig. 2a, Methods and Supplementary Sections 
1–4). Chemical measurements, conducted continuously and at high 
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resolution21, permitted identification of 55 age-constraint tie-points 
over the span of the core length (Methods). These tie-points ref-
erence 20th century radiogenic bomb horizons, volcanic eruptions 
and anthropogenically sourced heavy-metal emissions (Fig. 2b and 
Extended Data Fig. 2) and reveal the NU record to cover an age 
range of approximately 169 to 2015 ce.

Leveraging the advantageous physical setting of the NU ice cap 
(Methods), we developed a one-dimensional, physically based ice 
strain inversion method in order to both (1) refine our preliminary 
age scale and (2) establish an accumulation history for the NU ice 
cap (m, hereafter denoting the annual net surface mass balance, the 
difference between annually accumulated snowfall minus sublima-
tion and summertime surface meltwater runoff), relying on the 
55 age tie-points observed along the core length. Specifically, our 
approach sought an accumulation history (m) that is both ‘simple’ 
(denoting minimal deviations in accumulation rate from the NU 
site’s climatological mean) and consistent with our tie-point obser-
vations (Fig. 2b), thus minimizing the cost function (J):
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Here, ḃ0 is the site-representative climatological accumulation 
rate, and H0 is the site ice cap thickness. The function G
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represents layer-age estimates from a forward one-dimensional 
ice flow model (Methods) that maps our accumulation history 
onto an idealized depth–age scale assuming only steady-state ḃ0 
and H0 conditions, whereas the vector d contains the 55 observed 
age-constrained depths; the difference between the two is normal-
ized by the observed depth uncertainties (σ). The weight value λ 
specifies the relative importances of the layer thicknesses and the 
data misfits in determining J, conditioning the ill-constrained prob-
lem for uniqueness, while s represents a set of scaling values that 
quantify the ratio between m and ḃ0 for each year in the model. All 
double-barred terms in equation (1) denote the standard (Euclidian) 
norm. Minimizing the first term of equation (1) improves the match 
between the time–depth scale at the data points, while minimizing 
the second term yields a simpler ice strain history; minimizing both 

gives a solution that balances the two, the exact solution being dic-
tated by the choice of λ (Supplementary Section 5).

We used a two-dimensional grid search to minimize J across a 
range of H0 (120 to 165 m ice eq.) and ḃ0 (0.2 to 0.45 mice yr−1) ref-
erence values (equation (1)), assuming constant (that is, stepwise) 
m between observations (d). This procedure revealed a ‘mini-
mum complexity’ model (that is, most simple and consistent m) 
at ḃ0 = 0.325mice yr−1 and H0 = 141 mice (Fig. 3a and Extended 
Data Figs. 3 and 4), the latter being only one metre thinner than an 
independent field-derived estimate based on radar measurements 
and the density–depth profile (Fig. 2 and Supplementary Section 
2). While we thus expect that our least complex variation indicates 
accurate values of ḃ0 and H0, we also acknowledge that models 
slightly more complex than the minimum need not necessarily be 
incorrect. Given this fact, we nominally prescribed the distribution 
of accumulation models whose complexity was no more than 10% 
larger than that of the least complex model as ‘acceptable’ and indic-
ative of the uncertainty in our dating process. These values delineate 
a skewed ellipse, with acceptable ice cap thicknesses (H0) between 
138 and 144 mice and acceptable reference accumulation rates (ḃ0) 
between 0.30 and 0.35 mice yr−1 (Fig. 3a). The recovered NU accu-
mulation histories for all such models are provided in Fig. 3b, each 
showing broad agreement, albeit with increasing divergence (that 
is, relative uncertainty) at progressively deeper depths (that is, older 
portions) of the NU core. Importantly, however, the same relative 
patterns of centennial-scale accumulation variability occur even 
across less acceptable models, especially during the last millennium 
(Extended Data Fig. 4).

Abrupt hydroclimate shifts over the Common Era
Our reconstructed NU accumulation record reveals abrupt changes 
in CWG hydroclimate conditions across the Common Era, with 
climatological accumulation decreases averaging upwards of 20% 
moving out of the late MWP (13th century) into the height of the 
LIA (17th century) followed by a subsequent ~45% increase mov-
ing from the LIA into contemporary industrial-era conditions (late 
20th century; Fig. 4b). These accumulation changes are substan-
tially larger than last-millennium accumulation changes previously 
reported22,23 across the interior GrIS (Fig. 4e), highlighting both the 
enhanced sensitivity of CWG hydroclimate variability to large-scale 
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Fig. 1 | Nuussuaq ice cap location and moisture source influences. a, Previously analysed coastal (red) and interior (blue) Greenlandic ice core sites whose 
record lengths extend beyond the last millennium. The yellow dot denotes the NU ice cap location. Locations of terrestrial temperature proxy records 
containing >10 data points during the last millennium are shown in purple (Extended Data Fig. 1). b, Percent contribution per kilometre squared of the  
annual NU precipitation budget, inferred from a Lagrangian moisture source diagnostic (Methods). Note that the global area integral of b is 100%.  
c, Cumulative moisture contribution from b as a function of radial distance from the NU ice core site.
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climatic shifts during the last millennium and the exceptional abil-
ity of the NU ice cap (and likely Greenland GICs more generally) 
to respond to, and hence record, climate variability. Indeed, we find 
strong covariation (r = 0.70, P < 0.001; P here and throughout deter-
mined via the method of Ebisuzaki24) between our NU accumulation 
record and reconstructed Arctic 2k surface temperatures25 based 
predominantly on terrestrial proxies from northeast Canada and 
Greenland (Fig. 4c), an association not exhibited by interior ice core 
accumulation records22,23,26. Similarly strong coupling also extends 
into the recent industrial era (~1840–1980; r = 0.69, P < 0.001), 
when comparison with nearby CWG meteorological measure-
ments is possible (Extended Data Fig. 5). The relative insensitivity 
of interior GrIS hydroclimate conditions to temperature, in turn, 
has been noted elsewhere27,28 and may be linked to higher moisture 
content variations at low-elevation coastal sites28, localized sea ice 
influences29 or seasonal differences in moisture source, evaporation  
or transport30.

To better constrain the hydroclimatic links relating our NU 
accumulation record to regional changes (namely, surface tempera-
ture and sea ice cover), we conducted Lagrangian-based analysis of 
moisture transport variability to the NU ice cap at high resolution 
(6-hourly) over a multidecadal timeframe (1980–2013; Methods) 
using the state-of-the-art WaterSip30,31 moisture source accounting 
model. Model results point to the dominance of regional moisture 
sources from Baffin Bay and northeastern Canada for snowfall pre-
cipitated atop the Nuussuaq ice cap (Fig. 1b,c and Extended Data 
Fig. 6) and confirm the NU record as well poised for inferring past 
hydroclimate conditions along the CWG margin and Baffin Bay 
maritime province more broadly. These results further corrobo-
rate a significant positive link (P < 0.001) between modelled NU 
precipitation and regional temperature variations across monthly 
to interannual timescales (Extended Data Fig. 7a,b). In turn, NU 
precipitation versus Baffin Bay sea ice extent anomalies exhibit 
comparably weak, albeit non-negligible, mean annual association 

(P = 0.077) during recent decades (Extended Data Fig. 7c). In par-
ticular, although persistent sea ice coverage can negatively influence 
NU precipitation during late-winter months (ostensibly by control-
ling the area of open ocean exposed to evaporation), interannual 
variations in CWG precipitation appear most sensitive to changes in 
marine evaporation during late summer when precipitation is maxi-
mum and sea ice cover absent across Baffin Bay (Extended Data 
Figs. 6a,b and 8). Given the Common Era–long stability in CWG 
precipitation seasonality shown by a recent lake-derived leaf-wax 
reconstruction19, our moisture source analyses thus imply that 
regional surface temperature changes remained the dominant influ-
ence on NU accumulation throughout the span of our record.

Our finding that Common Era changes in NU ice cap accu-
mulation roughly scaled with regional temperature prior to exten-
sive late-20th-century GIC mass loss rates also provides better 
constraints on Greenlandic GIC sensitivity, critical for modelling 
initiatives previously limited to interior GrIS proxy records26,32. 
While temperature-dependent scaling of snow accumulation is 
consistent with expectations from the Clausius–Clapeyron rela-
tion29,33, the strong covariance with regional pre-21st century 
temperature change exhibited by our record is distinct from 
pre-existing interior GrIS records that decouple from Clausius–
Clapeyron below multimillennial timescales22,23,26. Our moisture 
source analysis suggests an enhanced CWG precipitation sen-
sitivity of 0.032 ± 0.007 mice yr−1 per degree centigrade moisture 
source warming, a value in close alignment with independent 
estimates of NU accumulation sensitivity based on nearby meteo-
rological measurements and an ensemble of pan-Arctic reanalyses  
(Extended Data Fig. 9).

Contextualizing past and present coastal ice cap changes
The significant positive association between Common Era NU 
accumulation and regional temperature change also offers an 
alternative explanation of several prior reconstructions of glacial 
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advance across the greater Baffin Bay region during the MWP, in 
lieu of the paradoxical MWP climate conditions argued for else-
where13–16. Notably, Young et al.13, Jomelli et al.14 and Schweinsberg 
et al.15 each used independent cosmogenic-nuclide-exposure 
moraine-dating methods to infer centennial-scale positioning in 
nearby Nuussuaq Peninsula, Disko Island and (latitudinally adja-
cent) eastern Baffin Island outlet glacier termini, with each study 
concluding that regional outlet glaciers reached or approached their 
most advanced Common Era states during the classical peak of 
the MWP (10th to 13th centuries), prior to LIA cooling (Fig. 4a). 
Glaciers advance during times of persistent positive mass balance, 
generally as a result of a reduction in summertime temperature lim-
iting melt and/or an increase in accumulation causing growth34. In 
the absence of prior coastal accumulation histories and the stable 
accumulation history shown by interior GrIS records (Fig. 4e), 
these studies interpreted advanced MWP glacial termini positions 
as representing prevailing (and thus paradoxical) regional cold con-
ditions that limited summertime coastal GIC melt, possibly due to 
a purported positive persistence35 of the North Atlantic Oscillation 
(NAO) during the MWP. The NAO is a climate pattern denoting 
shifting of the sea level pressure dipole over Iceland and Azores that, 
during its positive phase, manifests as surface cooling across north-
east Canada and Greenland (Extended Data Fig. 10b).

By contrast, our coastal ice cap accumulation record implies that 
advanced regional glacier termini positions during the MWP more 
likely arose from the strong positive influence of temperature on 
regional precipitation. In this case, increases in surface tempera-
ture during the MWP would have enhanced both local and far-field 
moisture uptake (Fig. 1b), increasing coastal snowfall rates, facilitat-
ing ice cap accumulation gains at high elevations and, eventually, 
the advancement of lower-elevation glacial termini over multiple 
decades to centuries. While we acknowledge that such increases 
in MWP temperatures would have likely also increased summer-
time mass losses across low-elevation ablation areas, such losses 
were probably limited prior to enhanced late-20th-century surface 
warming and possibly attenuated by increased snowfall that could 
further mitigate melt-based losses by both suppressing the melt–
albedo feedback3 and enhancing melt retention rates via firn replen-
ishment36. Supporting this suggestion, we highlight a compilation 
of regional ice core melt records37 alongside the NU melt record2 
(Fig. 4d and Extended Data Fig. 5i). Despite these records’ differ-
ing melt–temperature–elevation dependencies, each indicates simi-
lar MWP melt levels that, while on average elevated relative to LIA 
levels, are strongly suppressed relative to post-industrial warming 
owing to the non-linear melt–temperature sensitivity2. As coastal 
ice core melt records have been shown to provide spatially exten-
sive insights into past GIC meltwater runoff rates throughout this 
region2, these data imply that regional ablation area mass losses dur-
ing the MWP were only marginally higher than LIA levels (and thus 
viably compensated by increased high-elevation snowfall; Fig. 4b).

Given the sensitivity of CWG GICs to summertime NAO phas-
ing shown by observations1,38 and models39,40, we cannot definitively 
rule out the possibility that the persistent positive NAO state35 cham-
pioned by prior authors13–15 also served as a mechanism for MWP 
GIC growth. However, notwithstanding more recent proxy-41–43  
and modelling-based analyses42,44 that have refuted the notion of a 
persistently positive MWP NAO35, this hypothesis would imply that 
temperature-sensitive proxies across Greenland and northeastern 
Canada should also exhibit signatures of cooling during the MWP 
(Young et al.13 and Extended Data Fig. 10b). Yet this does not appear 
to be the case: the MWP-warm to LIA-cold transition is a defin-
ing feature of the Arctic 2k reconstruction25 (Fig. 4c), itself featur-
ing a well-vetted surface temperature proxy compilation strongly 
reflecting Baffin Bay changes (Extended Data Fig. 10b). Similarly, 
near-unambiguous inferences of enhanced summertime melt from 
our Baffin Bay ice core compilation (Fig. 4e) support MWP warmth, 

as do near-direct estimates of past temperature measured directly 
from GrIS boreholes45 and a δ15N- and δ40Ar-gas-derived temperature 
reconstruction46 from Summit, Greenland (Extended Data Fig. 10a).  
Overall, the sum of available evidence showing MWP warmth, 
including new analyses presented here, negates a persistent positive 
NAO state as necessary to invoke MWP GIC mass gains, despite 
limited, and less direct, evidence suggestive of the contrary13–15,17,47 
(Extended Data Figs. 1 and 10a).

From this conclusion, however, naturally arises the following 
paradox: if warming has tended to induce GIC growth in CWG 
during periods of the past, why have glaciers in this region largely 
receded from their LIA positions during the industrial era15? While 
our ice-core-based reconstruction alone cannot definitively rec-
oncile this question, it is widely accepted that both the rate and 
magnitude of recent warming in this region have greatly exceeded 
those arising from natural variability during the last millennium9,25 
(Fig. 4c). In CWG, widespread outlet glacier recession commenced 
by the early to mid-20th century48, a timeframe that lags the esti-
mated onset of industrial-era warming of this region9 by as much 
as six to ten decades but is broadly consistent with the exceedance 
of regional temperatures beyond MWP levels (Fig. 4c). Due to the 
strongly non-linear and threshold-limited2,3 response of Greenland 
GICs to climate, further warming of this region during subsequent 
decades of the mid to late 20th century may have accelerated CWG 
outlet glacier recession15,48 while associated ice cap accumulation 
zones situated at higher altitudes continued to gain mass from 
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increased snowfall. Such conditions are suggested by our NU ice 
core accumulation record, which shows significant (P < 0.001) posi-
tive covariation with local annual and summertime air temperatures 
over much of the industrial era (Extended Data Fig. 5f,g) as coeval 
recession of nearby low-lying outlet glaciers ensued13,15.

Under continued anthropogenic warming, the tenacity of 
high-elevation CWG ice cap accumulation zones becomes less 
clear: models predict that GIC accumulation areas such as NU 
have recently (or will soon) become subject to threshold-like tip-
ping points due to accelerating summertime melt rates exceeding 
annual snowfall2,49. In particular, increased melt frequency is shown 

to invoke a positive mass loss feedback that diminishes the buffer-
ing capacity of these GICs’ firn layers to refreeze surface meltwater3 
while also increasing the occurrence of near-impermeable ice layers 
that accelerate runoff36 and decrease albedo3. Indeed, our annually 
resolved NU accumulation record hints at an anomalous negative 
trend during the most recent two to three decades of rising coastal 
temperatures (Extended Data Fig. 5e–g), coinciding with the emer-
gence of regional ice cap surface melt to levels unprecedented over 
the preceding centuries to, possibly, millennia2,37. This could indi-
cate an ongoing regional shift from a positive (snowfall-driven) to 
negative (melt-driven) temperature–mass balance GIC regime.

In summary, our NU ice core accumulation record demonstrates 
an enhanced sensitivity of CWG ice caps to regional hydroclimate 
variability (Fig. 4 and Extended Data Figs. 5 and 7–10). We illus-
trate a near-linear positive coupling between NU ice cap mass bal-
ance and regional temperature change across much of the Common 
Era, a finding that stands in contrast to the negative relationship 
observed across most Greenland glaciers today and predicted under 
future warming scenarios2,3,49. Critically, our reconstruction rebuts 
suggestions of paradoxical climate conditions in CWG during the 
last millennium13–16, offering instead a more nuanced view of the 
interplay between temperature, snowfall and GIC responses to a 
warming Arctic that may have important implications for future 
sea level rise11,12. Nonetheless, the apparent Common Era scalability 
between temperature and CWG accumulation is unlikely to remain 
stationary given recent rapid Arctic warming above the range of 
natural variability9. Continued monitoring and future modelling 
work across a range of coastal GICs will help better quantify the 
counteracting relationship between warming-induced increases in 
snowfall and accelerating ice cap melt.
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Methods
Ice core drilling, processing and dating. Drilling was conducted over the span of 
three days in April 2015 using an 81 mm diameter Eclipse-Badger Drill provided 
by the US Ice Drilling Program (IDP; formerly Ice Drilling and Design and 
Operations, IDDO), reaching a (contiguous) bottom depth of 137.97 m below the 
surface, shy of bedrock (Fig. 2a) due to imposing field work deadlines. Borehole 
temperature measurements, conducted at ~10 m intervals, indicated an 11.5 m 
temperature of −6.54 °C, stabilizing to between −13.01 and −13.79 °C at depths 
below 41.5 m.

Ice core processing was conducted in June 2015 at the United States Geological 
Survey’s National Ice Core Laboratory (NICL; Lakeland, CO) in a Class-100 
HEPA-filtered cold room (−24° C), where the Nuussuaq core was cut into 
3 cm × 3 cm longitudinal sections for chemical analyses. Several complimentary, 
non-destructive measurements were conducted at NICL, including replicate core 
density measurements and 1 mm resolution electrical conductivity measurements51 
for volcanic layer identification. The Nuussuaq core was stored for approximately 
one year at NICL at −34° C before being transported to the Desert Research 
Institute (DRI; Nevada System of Higher Education). At DRI, chemical analyses 
were conducted for the entirety of the core over a one-week span in mid-May 2016 
using a continuous ice core melter system. Technical aspects of the DRI continuous 
melter system have been previously described21,52. Measurements conducted at DRI 
on the Nuussuaq ice core included simultaneous, depth-registered concentration 
measurements of ten trace species (Na, Mg, S, Cl, Ca, Br, Sr, Ce, Tl and Pb) from 
two inductively coupled plasma mass spectrometers, water isotope abundances 
(δ18O and δD of H2O) from a Picarro liquid water laser spectrometer, black carbon 
concentrations from a single particle soot photometer (SP2, Droplet Measurement 
Technologies), soluble chemistry (NH4

+ and HNO3
−) and conductivity using 

continuous flow analysis and semi-quantitative particle concentrations using an 
Abakus particle counter. In total, 17 parameters were measured at continuous 
~2 cm water equivalent resolution over the entirety of the core depth. Additionally, 
24 low-resolution measurements (~0.2–0.5 m) of 239Pu, a proxy for nuclear weapons 
testing, were conducted over targeted shallow to mid-depth portions of the core 
(23–33 m depth53) for dating purposes.

From our chemical and electrical conductivity measurements, it was possible 
to identify 55 age-constrained tie-points over the span of the core length 
(Supplementary Table 1). These tie-points reference 20th century radiogenic bomb 
horizons (2 ties; identified via 239Pu (ref. 53)), volcanic eruptions (49 ties, identified 
primarily via non-sea-salt sulfur and electrical conductivity) and anthropogenically 
sourced heavy-metallic emissions (4 ties based on Pb (ref. 52)). The shallowest 
~90 m of the core (~2/3 of the core depth), down to the Huaynaputina (Peru) 
volcanic eruption reference horizon at 1601 ce (ref. 54), contains the best-dated 
portion of the core (<2 year relative uncertainty), as vertical strain and 
associated thinning of annual layers have not yet become severe as to preclude 
the identification of seasonality in most chemical parameters (Fig. 2b). In deeper 
portions of the core, where seasonality in chemical parameters could no longer 
be adequately discriminated, dating relied on an iterative synchronization of 
well-prescribed volcanic54 and heavy-metal horizons52 to alternate well-dated 
inland GrIS cores (for example, NGRIP2 and NEEM-2011-S1; Extended Data 
Fig. 2) following the procedure outlined by McConnell et al.52. Although it is a 
semi-subjective approach, we consider age-defined tie-points down to the 536 ce 
mega-eruption horizon (ref. 54; 132.64 m) to be well constrained (1σ ≤ 5 years) given 
this portion of the NU record’s sufficient sampling time resolution (>1 sample 
per year) and the multi-parameter approach used for tie-point synchronization 
(Extended Data Fig. 2 and Supplementary Table 1). Due to severe thinning of 
annual layers below 132.64 m (Fig. 2), the identification of tie-points in the deepest 
~3 metres of core relied most intensively on 1 mm resolution alternating-current 
electrical conductivity measurements (Extended Data Fig. 2b) synchronized to the 
aforementioned interior GrIS ice core records54. Below the 536 ce horizon, relative 
uncertainty is estimated to 1σ = 10 years at 424 ce, increasing to 1σ = 50 years at 
169.5 ce, the deepest age horizon identified.

Ice cap strain forward model. The physical setting of the NU ice cap is 
advantageous for understanding past GIC–climatic interactions. First, the steep 
promontory on which the ice cap rests sets a natural upper limit on its areal 
coverage, while likely also moderating associated changes in ice thickness under 
variable climate conditions. Second, the smoothness of the underlying bed 
topography (determined from a combination of ground-based ice penetrating 
radar and a digital elevation model derived from Worldview satellite stereo 
imagery55; Fig. 2 and Supplementary Sections 1–3) suggests that relatively simple 
glacial flow conditions prevail at the NU ice cap34; this suggestion is further 
supported by borehole temperature measurements showing static cold-based 
thermal conditions persisting throughout the NU core depth below the pore 
close-off depth (~40 m). Given these facts, we take the relatively simple case in 
which our forward one-dimensional ice strain model (encapsulated in equation 
(1) as G (m)) assumes a linear increase in vertical shear stress with depth and no 
basal melting, closely following Nye56. The primary advantage of this conceptual 
model is that only knowledge of the site-mean surface vertical velocity (that is, 
climatological accumulation rate) and ice cap thickness are required as initial 
conditions for inferring the shape profile of ice flow vertical velocity, thus 

permitting low computational expense and better constrained (that is, fewer 
unknowns) inversions. However, we acknowledge that more complicated ice 
flow models could also be used (see, for example, Fudge et al.57). A full numerical 
treatment can be found in Supplementary Section 5.

NU moisture source tracking. We quantified seasonal and interannual 
variations in the evaporative moisture sources leading to precipitation over the 
Nuussuaq Peninsula (target area 55.3° W to 49.3° W, 69.5° N to 71.5° N) using 
the WaterSip method30,58. In the present study, we used the dataset of Läderach 
and Sodemann31, where trajectories are extracted from a global simulation of 
5 million particles that are advected continuously with the Lagrangian particle 
dispersion model FLEXPART59. Air parcel trajectories were computed using winds 
from the European Centre for Medium-Range Weather Forecasts (ECMWF) 
ERA-Interim reanalysis60 at 1° × 1° horizontal resolution over 60 vertical levels 
during the period 1980–2013 ce, with additional variables interpolated to the 
trajectory positions. Moisture gains (evaporation) or losses (presumed to represent 
precipitation only if losses were >0.10 mm per 6 h) were evaluated along a given 
trajectory by tallying the specific humidity content of that air parcel. Using this 
method, the percentage of explained moisture contained in a given air parcel at 
each successive time step could be quantified through a mass-weighted summing 
of evaporation and precipitation events along that air parcel’s trajectory. The 
WaterSip method captures the large majority of moisture uptake in an airmass, 
while underestimating the (typically small) contribution of very long-lived water 
vapour58. By budgeting across successive years, the relative source contribution 
of precipitated moisture over the NU ice cap could be allocated on a grid-by-grid 
basis, a spatial diagnostic that in turn allowed for straightforward determination  
of accompanying temporal diagnostics such as moisture source temperature  
(for example, Extended Data Figs. 7 and 9a).

Data availability
Ice core annual accumulation time series (Figs. 3 and 4) are publicly available via 
the National Oceanic and Atmospheric Administration (NOAA) Paleoclimatology 
Data Archive (https://www.ncdc.noaa.gov/paleo/study/33772). Depth-resolved 
geochemical and ice-conductivity measurements, used for time-dating of the NU 
ice core (for example, S, Pb, Tl, Mg and Na), are available via the National Science 
Foundation Arctic Data Center (https://arcticdata.io). NASA Operation IceBridge 
data (Fig. 2a and Supplementary Section 2) can be accessed using the National 
Snow and Ice Data Center’s (NSIDC) IceBridge Data Portal (https://nsidc.org/
icebridge/portal/map). Temperature reanalysis data (Fig. 4) from HadCRUT4 are 
available from https://crudata.uea.ac.uk/cru/data/temperature/. WaterSip data are 
available from H.S. on request.

Code availability
Ice strain inversion source code is available at https://github.com/mattosman/
NU-inversion. Code for post-processing and analysis of WaterSip data, and all 
associated statistical analyses described herein, is available from M.B.O. on request.
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Extended Data Fig. 1 | Comparison of coastal West Greenland terrestrial temperature proxies. a, Sediment core-derived time series (all shown 
with positive orientation relative to increasing temperature) are numbered from 1-11, representing most-northerly to most-southerly situated, with 
corresponding coastal locations shown in (b). All sediment records are limited to sites containing at least 10 data points during the Common Era. (1.) 
First Principal Component (“PC1”) of physical properties measured from the Sikuiui Lake sediment core16. (2.) Reconstructed July lake temperatures from 
chironomid-abundance assemblages from North Lake, CWG (ref. 61). (3.) Lake N-3 δ2H of C28 n-alkanoic acids, produced by terrestrial plants19. (4.) Organic 
matter (OM) fluxes for SS1381 (ref. 62). (5.) PC3 of parameters reflecting lake-bottom redox variability (Mn, Mn/Fe, Ca/Ti and grey scale; ref. 17).  
(6.) Alkenone unsaturation (UK

37) from Braya Sø63. (7.) First canonical correspondence (CC1) of SS16 diatom assemblages64. (8.) Residue-on-ignition (ROI) 
from the NAUJG1-1 lake sediment core65. (9.) Pollen flux to Lake Igaliku, CWG18. (10.) Scoop Lake temperatures via the δ18O content of chironomids20. 
(11.) Biogenic silica abundances in Lake N14 (ref. 66). Red and blue ranges represent the mean (μ) and standard deviation (σ) range of MWP (red) and LIA 
(blue) values. Purple probability density functions at top show outlet glacier distal-moraine age-estimates (where “distal” refers to the most advanced 
Common Era glacier terminus positions identified at each site) from Nuussuaq Peninsula, Disko Island, and Baffin Island13–15.
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Extended Data Fig. 2 | Synchronization of the Nuussuaq ice core to previously published, well-dated interior Greenland Ice Sheet ice core geochemical 
records. Shown for comparison alongside the NU record is the NGRIP2comp. (NGRIP2 prior to 1257 CE, composited to NEEM-2011-S1 record thereafter; 
ref. 52) and NEEM-2011-S1 records for (a) Pb and (b) non-sea-salt sulfur (nssS). Alternating-current Electrical Conductivity Measurements (ECM-AC), 
conducted at high-resolution (1 mm) along the NU core profile, are shown for the deepest (oldest) portion of the core alongside NGRIP2 ECM 
measurements52 and NEEM-2011-S1 nssS (ref. 54). Tie point ages identified along the core length are shown as vertical grey lines. Age scales for the 
NGRIP2 and NEEM-2011-S1 records follow ref. 52.
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Extended Data Fig. 3 | Minimized age-constraint offsets in the least complex Nuussuaq age-model. a, Recovered age-depth scale for the least complex 
accumulation history model, alongside the corresponding age-depth picks. Error bars on the age-depth picks, and differences with the recovered 
age-depth model, is not visible at this scale. b, Age differences between the least complex recovered age-depth scale and the age-depth constraints 
(circles with bars), with the prescribed relative uncertainties shown as the vertical bars.
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Extended Data Fig. 4 | Consistent Nuussuaq ice cap accumulation histories under varying prescribed reference ice thicknesses and accumulation 
rates. a, Predicted (that is, forward modeled) age-depth scales under three different reference ice thickness (H0 = Hopt = 141 mice and H0 = Hopt ± 10 mice) 
scenarios and a constant reference accumulation rate (ḃ0 = ḃopt = 0.325 mice yr−1). The depth-age-constraints (“Layer Picks”, Fig. 2b) are shown for 
comparison, showing all corresponding age-scales agree well at shallow depths, but diverge noticeably at depths greater than approximately 100 mice 
where large variations in depth-ages are increasingly dictated by small variations in ice strain. b, Recovered NU accumulation histories estimates for the 
three model-predicted age-depth scales shown in (a), illustrating the sensitivity of our NU accumulation history to H0. For H0 = 131 mice, accumulation rate 
must increase over much of the core’s time-history to compensate for the added strain implied by the thinner ice cap. The converse is true for H0 = 151 
mice, where the annual layers must be relatively thin to compensate for lower strain. The deviations from the global optimum accumulation rate for H0 = 131 
mice and H0 = 151 mice each imply enhanced model complexity although, importantly, the form of variability over the last millennium appears robust across 
all models.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Industrial-era time series analysis of coastal West Greenland hydroclimate variability. a, Danish Meteorological Institute-derived 
precipitation anomalies at Pituffik and Nuuk compared to (b) WaterSip-inferred NU ice cap precipitation anomalies. Thin lines show precipitation from 
the ERA-20C reanalysis67, illustrating long term increasing CWG trends. d, Station-based mean-annual NAO index68. e, Baffin Bay wintertime (FMA) 
sea ice extent (“SIE”; 40-80˚N, 80-45˚W). f, Danish Meteorological Institute-derived summertime CWG temperatures from ref. 69 (note site locations 
in the inset). g, The NU annual-resolution accumulation history and (h) melt percent history. Panel (i) shows overlapping annual resolution Devon and 
Agassiz Ice Cap melt histories alongside NU melt, with site locations for time series shown here and in Fig. 4d at left for reference. All annual and 10-yr 
lowpass filtered data are shown using thin and thick lines, respectively. Shown at top for comparison is the estimated industrial-era onset and emergence 
timing of Arctic temperature70 and CWG melt (light grey; ref. 2). Note the strong covariation (r = 0.69; p < 0.001) between NU mass balance and coastal 
summertime temperatures prior to local melt-emergence.
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Extended Data Fig. 6 | Seasonal moisture source estimates for the Nuussuaq Ice Cap. a, The WaterSip-diagnosed seasonal cycle of moisture-source 2 m 
surface air temperature (yellow) and Baffin Bay (defined 85-45˚W and 40-80˚N) sea ice extent from ERA-Interim during the same period (“SIE”; grey). 
Thick lines denote the mean and shaded bands the 1σ range. b, WaterSip-estimated NU precipitation seasonality (median ± 1 median-absolute-deviation) 
based on ERA-Interim precipitation60. Also shown are monthly precipitation rates from the Danish Meteorological Institute71 weather-stations in Nuuk 
(64˚N), Qaqortoq (60˚N) and Pituffik (76˚N; see also inset Greenland map to the right of (b)). Clyde River data are from ref. 72. c, Percent contribution 
of the NU annual moisture budget per degree latitude-longitude, inferred from WaterSip (Section 6.2) during January-February-March (JFM; CWG 
precipitation minimum). d, As in (c), but for July-August-September (JAS; CWG precipitation maximum). (e) and (f): Percent moisture contribution as a 
function of distance from the NU ice core site, shown for JFM and JAS, respectively (see also Fig. 1b-c). Bar plots in (e) and (f) and inset globe to the right 
of (f), are color-coded by distance from the NU ice core site.
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Extended Data Fig. 7 | Relationships between WaterSip-modeled Nuussuaq precipitation and moisture source temperature (a-b) and Baffin Bay sea-ice 
extent (SIE) (c-d) at mean-annual (a,c) and mean-monthly (b,d) resolutions. Points in (a) are color-coded with respect to Baffin SIE (1980-2013 CE), 
and in (b) with respect to moisture source temperature (1980-2013 CE). All monthly anomalies have been seasonally detrended. Both linear correlations 
shown in (a) are significant at p < 0.0001 via the method of ref. 24. Note different x-scales in the top vs. bottom panels.
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Extended Data Fig. 8 | Mean-annual, summertime, and wintertime Nuussuaq precipitation sensitivity to temperature and sea-ice changes. Shown in 
the left panels are WaterSip-diagnosed (a) annual, (b) JAS, and (c) JFM NU evaporation-rate differencing maps for years with anomalously high- vs. low 
snowfall accumulation over the NU ice cap. Anomalous snow accumulation years are defined as years when model-estimated snowfall deviates greater 
than 0.5σ and less than −0.5σ, where σ denotes transformation to z-score units relative to the observational period 1980-2013 CE. Red and blue lines 
shown in the left panel denote the corresponding mean sea ice edge position (defined as the 15% sea ice concentration isopleth) for all anomalously 
high and low NU snow-accumulation years, respectively. The right panels denote the corresponding SW Greenland temperature69 and Baffin Bay 
(defined 40-80˚N, 80-45˚W) sea ice extent (SIE) anomalies (shown in z-score units for visualization) for anomalously high (red) and low (blue) NU 
snow-accumulation years. Box plot center lines denote the mean, dark shading the ±1σ range, and light shading the 95% confidence interval. Collectively, 
the results suggest that although temperature is most important in dictating NU snow accumulation on a year-round basis, Baffin Bay SIE may also play a 
non-negligible secondary role by dictating wintertime NU snow-accumulation.
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Extended Data Fig. 9 | Sensitivity of modelled and observed Nuussuaq accumulation changes to temperature. a, WaterSip precipitation sensitivity 
to moisture source temperature. b, NU accumulation vs. CWG Danish Meteorological Institute71 mean annual surface temperature. c, Observed NU 
accumulation sensitivity to three different pan-Arctic surface air temperature estimates: the NOAA 20th Century Reanalysis (NOAA20C; ref. 73), the 
NASA-GISS product74, and the HadCRUT4 product50. Analyzed values in (b) and (c) are 10-yr mean-binned resolution, ignoring the most-recent post-1980 
GIC melt-emergence period. All dependent- and independent-variable uncertainties are ±1σ (n = 10 years) and the shaded bands the 95% confidence 
intervals of the weighted regression. d, Bootstrap-derived (random sampling with replacement; n = 1,000 iterations) sensitivity of NU accumulation per 
degree warming. Confidence ranges are, from lightest to darkest, 2.5-97.5th, 10-90th, 25-75th, and 50th percentiles.
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Extended Data Fig. 10 | Comparison of regional temperature and the North Atlantic Oscillation during the Common Era. a, From top: comparison of NU 
ice core accumulation (this study) against Arctic-2k temperature25; ice core δ15N-δ40Ar gas-derived surface air temperature46; interior Greenland ice core 
borehole thermometer-derived surface air temperatures45; alkenone-based sea-surface temperature from MD99-2275 and A07-036 (inverted y-axis) 
showing divergent MWP warming/cooling, respectively47; a bi-proxy (Scotland speleothem and Moroccan tree ring) NAO reconstruction35; a multiproxy 
model-tested NAO reconstruction75; a tree-ring based NAO reconstruction42; and a station-based NAO index68. All NAO series are shown at 30-yr 
lowpass resolution for visual comparison. Vertical light red and blue shaded intervals are the MWP and LIA, respectively. Panels (b) and (c) show spatial 
correlation maps (1900-2015 CE) for the mean annual NAO index of ref. 68 vs. NOAA20C mean annual surface air temperatures (SAT)73 and HadISST v1.1 
mean annual sea surface temperature (SST)76, respectively. Site locations from (a) are highlighted in (b); note the predominance of Baffin Bay-centric sites 
from the Arctic-2k compilation25.
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