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Globally resolved surface temperatures 
since the Last Glacial Maximum

Matthew B. Osman1 ✉, Jessica E. Tierney1, Jiang Zhu2, Robert Tardif3, Gregory J. Hakim3, 
Jonathan King1 & Christopher J. Poulsen4

Climate changes across the past 24,000 years provide key insights into Earth system 
responses to external forcing. Climate model simulations1,2 and proxy data3–8 have 
independently allowed for study of this crucial interval; however, they have at times 
yielded disparate conclusions. Here, we leverage both types of information using 
paleoclimate data assimilation9,10 to produce the first proxy-constrained, full-field 
reanalysis of surface temperature change spanning the Last Glacial Maximum to 
present at 200-year resolution. We demonstrate that temperature variability across 
the past 24 thousand years was linked to two primary climatic mechanisms: radiative 
forcing from ice sheets and greenhouse gases; and a superposition of changes in the 
ocean overturning circulation and seasonal insolation. In contrast with previous 
proxy-based reconstructions6,7 our results show that global mean temperature has 
slightly but steadily warmed, by ~0.5 °C, since the early Holocene (around 9 thousand 
years ago). When compared with recent temperature changes11, our reanalysis 
indicates that both the rate and magnitude of modern warming are unusual relative to 
the changes of the past 24 thousand years.

The interval of time spanning the Last Glacial Maximum (LGM; 
21–18 thousand years ago, ka) to the preindustrial era represents the 
most recent large-scale reorganization of the climate system, over 
which the Earth rapidly transitioned out of a cold, glaciated state 
with vast Northern Hemisphere ice sheets into a warm interglacial.  
Constraining the evolution of global surface temperatures during this 
critical time period provides an excellent opportunity to better under-
stand the mechanisms of large-scale climate change, including Earth 
system interactions and responses to various forcings (for example, 
greenhouse gases, albedo/ice-sheet and orbital changes).

A number of prior studies have sought to characterize the global 
surface temperature evolution from the LGM to present3–7. Of particular  
note, Shakun et al.3 and Marcott et al.6 established a global mean  
surface temperature (GMST) estimate spanning the deglacial and Holo-
cene periods using ~80 marine and terrestrial temperature proxies 
(hereafter, the Shakun–Marcott curve; SMC). However, subsequent 
comparisons of SMC to other global temperature reconstructions and 
transient LGM-to-present model simulations revealed discrepancies 
surrounding the timing, magnitude, and rapidity of deglacial warming 
and of millennial-scale cooling events2,4. One of the most prominent  
differences between SMC and climate model simulations is the direc-
tion of global temperature change across the Holocene. Whereas SMC 
shows a cooling trend, modelling results indicate there should be a 
warming, a phenomenon termed the Holocene temperature conun-
drum2. More recent work has sought to reconcile these differences by 
using either independent12,13 or additional7,12 proxies, and by correcting  
for possible proxy seasonal biases2,8,12. Nonetheless, all of these 
approaches have a fundamental limitation in that none provide a 

dynamically constrained full-field view of climate evolution since the 
LGM. Conversely, although climate models provide a self-consistent 
and spatially complete representation of the climate system, they 
are known to have biases due to inaccurate representation of climate  
processes10,14. Moreover, the fidelity of paleoclimate simulations of the 
LGM and Holocene depends on the accurate knowledge of paleoclimate 
boundary conditions, which are known with varying levels of certainty 
and may not be independent from proxies2,15,16.

The Last Glacial Maximum reanalysis
Here, we revisit the evolution of global temperatures from the LGM to 
present using an offline paleoclimate data assimilation approach that 
formally combines proxy and independent model information9,10,17.  
The resulting ‘Last Glacial Maximum reanalysis’ (LGMR) product 
offers the first proxy-constrained, dynamically consistent and 
spatiotemporally complete view of climate change for the past 
24 kyr. The LGMR enables us to diagnose the major modes of climate 
variability, refine our understanding of global temperature changes 
across the Holocene, and compare current anthropogenic global 
warming with the rate and magnitude of change seen in the recent 
geological record.

Following ref. 10, we focus on assimilating geochemical proxies for 
sea surface temperature (SST) with established Bayesian proxy  
forward models18–21. To ensure that the proxy data have sufficient 
temporal resolution and length to inform our reconstruction, we 
required that records be at least 4,000 years long, have a median time 
resolution of 1,000 years or less, and contain a radiocarbon-based 
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age model. The temporal criteria were relaxed for several (seven) sites 
in the Southern Ocean to increase coverage in this data-poor region. 
Conversely, some SST records that met these criteria were excluded 
due to complications related to proxy interpretation and (or) their 
location (Methods). In total, our vetted compilation consists of 539 
records, including 133 alkenone (U37

K' ), 25 TetraEther indeX of 
86 carbons (TEX86), 123 planktic foraminiferal Mg/Ca, and 258 planktic 
foraminiferal oxygen isotope (δ18Oc) time series (Fig. 1 and Extended 
Data Fig. 1).

The diversity, size and spatial coverage of our proxy compilation 
offers new insight into LGM-to-present climate evolution on its own. 
However, transient offline data assimilation further leverages the 
full-field dynamical insights available from climate models to bypass 
issues related to heterogeneous proxy spatial distribution3,4,6–8. The 
model ‘prior’ for the assimilation consists of 50-year average states 
from 17 LGM-to-present time-slice experiments conducted with the 
isotope-enabled Community Earth System Model version 1 (iCESM1; 
Extended Data Table 1 and Methods; refs. 10,22). We reconstruct climate 
at 200-year intervals, adhering to the resolution limitations of the 
majority (>90%) of our proxy data. For a given time interval, we estimate 
proxy values from the model prior at the locations where geochemical 
measurements exist using our Bayesian forward models, which take 
into account seasonal growth preferences on a per-species basis for 
δ18Oc and Mg/Ca (refs. 20,21), and seasonal production for U37

K'  (ref. 19; 
Methods). The difference between the actual and the forward modelled 
proxy value (the ‘innovation’) is weighted by the Kalman gain, which 
considers the covariance between the proxy location and the climate 
fields as well as uncertainties in the proxies and the prior, producing 
an ‘update’ that is then added to the model prior state. For our final 
reconstruction, we generated a posterior ensemble of 500 realizations, 
based on random sampling of 60 prior states for each time interval, 
with 20% of proxy records withheld for error quantification and valida-
tion testing. We also sampled age uncertainty to ensure that this source 
of error was propagated into our assimilated fields. As in proxy-only 
analyses3,4,6,7,12, this results in some temporal smoothing of our LGMR 
ensemble mean but does not impact the fidelity of millennial-scale 
trends or features (Methods).

The LGMR highlights the exceptional and spatially heterogeneous  
nature of deglacial climate change (Fig. 2). Reconstructed GMST 

reveals a distinct three-part sequence across the past 24 kyr. From 
24–17 ka, the Earth is in a ubiquitously cold glacial state. The thermal 
imprints of the North American and Eurasian ice sheets are near their 
maximum extent, with terrestrial cooling relative to the preindustrial 
below −20 °C across the glaciated high northern (>45°N) and southern 
(>45°S) latitudes (Fig. 2). At 16.9 ka (median; 95% confidence interval 
(CI) = 18.5–16.0 ka; Supplementary Information), global-scale degla-
ciation (the second stage) abruptly begins. Deglacial global warming 
shows a familiar3 two-step rise that is punctuated by the millennial-scale 
Bølling–Allerød (14.8–12.8 ka) to Younger Dryas (12.8–11.7 ka) events. 
Following the Younger Dryas cooling event, the Earth enters its final 
transition towards the present interglacial. In the third part of the GMST 
sequence, early Holocene (11 ka  onward) warming stabilizes by 9.5 ka 
(11.2–8.7 ka) and is followed by a small (~0.5°C) but significant (>99% 
probability from 9.5–0 ka) global warming until preindustrial times. 
A vestigial cold imprint over northeastern North America is all that 
remains of the once-great Northern Hemisphere ice sheets at 9 ka as 
mild, albeit widespread, high-latitude warming ensues; Antarctica 
shows a notable east-west thermal dipole next to a relatively warm 
Southern Ocean; whereas mild cooling persists across much of the 
tropics (Fig. 2). All told, we estimate a global warming of 7.0 ± 1.0 °C (2σ) 
from the deglaciation onset to preindustrial, which is larger than the 
value reported in ref. 10. (6.1 °C), with ~90% of the warming occurring 
between 16.9 ka and 9.5 ka. The greater warming found here reflects 
the LGM period referenced (ref. 10 uses 23–19 kyr, which corresponds 
to 6.8 ± 1.0 °C in the LGMR) as well as differences in iCESM model  
priors, proxy data distribution, and the degree of covariance  
localization used (Methods).

Validating the LGMR
Offline data assimilation products are strongly dependent on the 
covariance structure of the model prior23. A limitation of the LGMR is 
that it is based on priors from a single model (iCESM), which are inevi-
tably biased by model deficiencies, resolution and uncertainties in 
boundary conditions. However, we can objectively test the veracity of 
the LGMR, including its spatial representation, using two independent 
methods of statistical validation. First, we use our posterior LGMR 
fields to reconstruct withheld proxy time series (for example, ref. 17). 
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Fig. 1 | Locations and temporal coverage of the SST proxies. a, Site locations 
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K'  and δ18Oc records (right), as well as their latitudinal 
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Across the ensemble, the majority of records are skilfully reconstructed 
(Methods) with no obvious signs of regional biasing (Extended Data 
Fig. 2). Second, following ref. 10, we compare posterior δ18O of precipi-
tation (δ18Op) to independent ice core- and speleothem-derived δ18Op 
time series (Extended Data Table 2). On a global scale, we find notable 
improvement in the posterior comparison of δ18Op over the modelled 
state, with a ~30% reduction of error and a large increase in variance 
explained (Extended Data Fig. 3). LGMR recovers 65–90% of the ice core 
δ18Op variance (n = 13 records; Extended Data Table 2), including diver-
gent Holocene trends in east versus west Antarctica δ18Op (Extended 
Data Fig. 4). Both tests suggest that our posterior assimilation is robust, 
but the close correspondence between LGMR δ18Op and ice core proxy 
records in particular emphasizes that the LGMR is producing a realistic 
climate state.

Drivers of global temperature change
To gain further insight into the drivers of global surface temperature 
change during the past 24 ka, we decompose our LGMR temperature 
fields into spatiotemporal modes of variability using empirical orthogo-
nal function (EOF) analysis (Supplementary Information). As expected, 
the first spatial mode, EOF1, exhibits positive loading across the globe 
and explains the majority (>90%) of the surface temperature covari-
ance during the past 24 ka (Fig. 3a). This mode is clearly associated 
with deglaciation, with the strongest amplitude concentrated atop 
the North American and Fennoscandian ice sheets. The uniform nature 
of EOF1 implies an association with changes in greenhouse gas (GHG) 
radiative forcing and ice sheet albedo. Given the monotonic nature 
of the associated principal component time series, PC1, GHG forc-
ing24 can explain 92% of the EOF1 variance (Fig. 3b). However, there 
are notable differences between the two time series: during the early 
to mid-Holocene, GHG radiative forcing increases at around 12 ka and 
then gradually decreases, while PC1 steadily increases. This implies 
GHG forcing alone is not sufficient for explaining the leading mode 
of global temperature variability.

Modelling experiments indicate that the magnitude of ice sheet 
albedo forcing is comparable to (if not greater than) GHG forcing across 
the deglacial transition10,13,25. By considering GHG and ice sheet forc-
ing together, we account for 98% of the variance in PC1 as well as the 
observed warming during the Holocene (Fig. 3c). The inclusion of ice 
sheet albedo forcing also explains the strong EOF1 loading atop North 
America and Fennoscandia (Fig. 3a). Although other radiative forcings, 
such as vegetation and dust, probably also impacted LGM-to-present 
temperature change10 our EOF results imply that these were of lesser 
importance in terms of their global footprint, particularly during 
deglaciation.

The second mode of global temperature variability, EOF2, explains 
only 3.5% of the variance. However, it is distinct from its neighbouring 
tailing modes and physically interpretable (Supplementary Information).  
This mode is a hemispheric dipole, with strong positive loading across 
the Southern Ocean and negative loading spanning much of the Northern 
Pacific, North America and the North Atlantic (Fig. 3b). Its associated time 
series, PC2, consists of both long-term trends as well as millennial-scale 
peaks during the deglaciation. We interpret this mode to represent a 
superposition of two sources of climate variability: changes in Atlantic  
Meridional Overturning Circulation (AMOC; the millennial-scale 
features) and orbitally induced shifts in high latitude seasonality 
(the long-term trends). To illustrate this, we decompose PC2 into 
its long-term ‘trend’ (Fig. 3c, purple) and millennial-scale ‘residual’  
components (Fig. 3c, yellow).

The trend component of PC2 represents a precession cycle, with a peak 
at around 11 ka. Both summer insolation intensity at 65°N26 and South-
ern Hemisphere summer duration at 65°S27 offer good approximations  
of this long-term change (Fig. 3c). However, we interpret the latter 
as the likely driver. Enhanced summer insolation in the Northern 
Hemisphere would not cause mean annual cooling; this conflicts 
with conventional Milankovitch orbital theory28. In addition, spatial 
correlation analyses (of either orbital series) with surface temperatures  
indicate that the strongest coupling occurs in the Southern Hemi-
sphere (Extended Data Fig. 5b). The strong loading of EOF2 in the 
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Fig. 2 | Global mean surface temperature change over the past 24 kyr. 
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as dark and light histograms at the bottom (Supplementary Information). 
Reconstructed decadal GMST from the last millennium reanalysis v2.1 (ref. 17) 
and HadCRUT5 observational product11 are plotted to the right of the LGMR. 
∆GMST is computed relative to the preindustrial last millennium average 
(1000–1850 CE).
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Southern Ocean in particular could point towards a feedback with 
regional sea ice; a longer summer (and shorter winter) would increase 
the extent of summertime sea ice retreat while decreasing its growth 
during wintertime, resulting in an increase in mean annual surface 
temperatures27.

The residual component of PC2 closely follows (R2 = 0.80) 231Pa/230Th 
proxy records of AMOC from the Bermuda Rise29–31 (Fig. 3c). Prior studies  
have also identified this ‘bipolar seesaw’ mode32,33, which represents 
the millennial-scale events that occurred during the last deglaciation 
(Heinrich event 1, the Bølling–Allerød, and the Younger Dryas). Correlation  
analysis shows that Northern Hemisphere surface temperatures in 
LGMR are strongly related to AMOC changes (Extended Data Fig. 5c). 
A decrease in Atlantic heat transport would also lead to compensating 
warmth in the Southern Hemisphere, similar to the loading pattern of 
EOF2. However, the particularly strong loading found across the Indian 
and Pacific Ocean sectors of the Southern Ocean does not match the 
classic fingerprint of the oceanic bipolar seesaw34. Similarly, the strong 
loading in the eastern North Pacific is not typical of a modelled response 
to an AMOC slowdown1,35,36. It does, however, reflect the underlying 
proxy records from this region, which show a strong response of SST 
to North Atlantic climate variability37. Columbia River megaflood melt-
water forcing may have contributed to the severe cooling observed 
in deglacial SST records from the Gulf of Alaska37; however, step-wise 
deglacial cooling might also be explained by dynamic changes in the 
subpolar gyre boundary38.

Comparison to proxy-only insights
LGMR GMST shows several notable differences when compared to the 
proxy-only SMC reconstruction. Focusing first on pre-Holocene differ-
ences, the LGMR has a more abrupt onset of deglaciation at ~17 ka, and 
a more muted Bølling–Allerød–Younger Dryas transition (Fig. 4a). The 
LGMR also indicates nearly twice as much glacial cooling, but this can 
be explained by the fact that the SMC is based mostly on SST proxies 

and was not scaled to infer GMST; we scale it here for comparison 
(Fig. 4a). To diagnose the origin of the other differences, we generated a 
proxy-only GMST reconstruction from our SST compilation (Methods). 
Even though our compilation has many more proxy SST records (and 
no terrestrial records), it is strongly correlated with SMC (R2 = 0.98).

The similarity of the proxy-only reconstruction and the SMC illumi-
nates at least two shortcomings that are effectively mitigated by our 
data assimilation approach. First, proxy-specific GMST reconstructions 
suggest that the gradual deglacial onset is most likely to be linked to 
the Mg/Ca data, which show early deglacial SST increases relative to 
U37

K'  and δ18Oc (Extended Data Fig. 6a and Supplementary Information). 
Such differences may reflect proxy-specific spatial bias (Fig. 1); data 
assimilation will mitigate these differences by balancing signals from 
other nearby proxies. Second, data assimilation allows us to overcome 
problems associated with spatial aliasing in the proxy distribution. 
Unlike the enhanced Younger Dryas cooling shown by the proxy-only 
curves (Fig. 4a), LGMR reveals that Younger Dryas cooling was in fact 
confined to the Northern Hemisphere (and, specifically, the North 
Atlantic and North Pacific sectors; Extended Data Fig. 7). Thus, the 
stronger expression of the Younger Dryas in the proxy-only GMST 
curves could reflect Northern Hemisphere bias in the proxy  
distribution during the deglaciation (Fig. 1a).

Holocene global temperature trends
The LGMR provides an updated view of the Holocene temperature conun-
drum2. All of the proxy-only reconstructions—including SMC, Temp12K7 
and ours—show a cooling trend that begins at ~7 ka BP and continues 
through the Holocene (Fig. 4b). In contrast, LGMR shows a small (0.25 °C) 
but significant warming (P > 0.9, based on ensemble analysis) since 7 ka  
(Fig. 4b). The Holocene trend in LGMR does not come from the model 
prior; in fact, the model suggests a warmer mid-Holocene due to a pre-
scribed ‘Green Sahara’ (Methods; Extended Data Table 1). Rather, it is a 
feature of the assimilation: the early-mid Holocene warming in Mg/Ca 
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(and, to a lesser extent, U37
K'  and δ18Oc) that underlies the conundrum is 

nearly eliminated after assimilating each proxy type into iCESM (Extended 
Data Fig. 6). Such consistency implies that a warming trend through the 
Holocene is a robust solution. This solution is generally similar to the 
temperature evolution simulated by TraCE-21k (Fig. 4b) indicating that 
the Holocene conundrum is effectively resolved by data assimilation.

Most likely, this is related to how data assimilation weights the proxies 
to compute a global average. Data assimilation weights proxies based 
on their uncertainties and the model-proxy covariance structure and 
uses this information to update the surface air temperature field. In 
contrast, proxy-only reconstructions rely on simple latitudinal binning 
and weighting. This renders the latter approach particularly sensitive 
to latitudinal bands with sparse proxy coverage or outliers. Sensitivity 
tests (Supplementary Information) suggest that limited number of 
proxies in the Southern Ocean latitude band (45–60°S) can account 
for about half of the early Holocene warmth in our proxy-only GMST 
curve (Extended Data Fig. 6b). This implies the Holocene conundrum 

may be, in part, an artifact of poor spatial averaging. More broadly, 
given that proxies are unevenly distributed, proxy-only reconstruc-
tions do not represent a true global average. In contrast, LGMR-based 
GMST is based on a spatially complete field, and thus is truly a global 
mean air temperature. This is a clear strength of the LGMR over exist-
ing reconstructions.

Proxy seasonal bias may also play a role2,8. The LGMR uses proxy for-
ward models that account for seasonal plankton growth19–21 and allow 
δ18Oc and Mg/Ca seasonality to change through time. Our proxy-only 
curves use inversions of the same models but require that seasonal-
ity be temporally fixed. Thus, the proxy-only reconstructions could 
be more affected by seasonal bias. However, analyses exploring the 
impact of seasonally biased records, as well as the ‘dynamic’ season-
ality in LGMR, indicate that seasonality has a minimal influence on 
the Holocene GMST trajectory in both proxy-only reconstructions 
and data assimilation (Extended Data Fig. 6a–c and Supplementary 
Information). Within the confines of our forward modelling assump-
tions, seasonal bias is a less prominent contributor to the conundrum 
than spatial weighting.

Finally, the LGMR allows us to directly assess 20th and 21st century 
warming from the broader vantage point of the past 24 kyr. When 
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randomly drawn samples; see Methods and Fig. 2); and (3) the TraCE-21k simulation1 
scaled to reflect the magnitude of LGMR deglacial warming (Supplementary 
Information). Observed centennial warming rates after 1910 CE exceed the  
99th percentiles of the three distributions.
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juxtaposed alongside the last millennium reanalysis (also a paleocli-
mate data assimilation product17) and observational HadCRUT511 
(Fig. 2), we find that 2010–2019 mean GMST exceeds the upper bound 
(>99.9th percentile) of decadal-estimated values from the LGMR by a 
considerable margin: >0.5 °C, or +1.5 °C above mean Holocene GMST. 
These findings differ from those of Marcott et al. 6, who suggested that 
early 21st century temperatures (2000–2009) had not yet exceeded 
early Holocene values and reflect increased confidence over ref. 7, 
who find that 2010–2019 warming is at the ~80% CI of mid-Holocene 
centennial-scale values. Similarly, we find the HadCRUT5-observed 
rate of 20th to 21st century warming (0.96 °C per century) registers 
near the upper bound of LGMR deglacial warming rates (that is, >99th 
percentile; Fig. 5). A similar conclusion is reached when comparing 
HadCRUT5 warming rates to the monthly resolved TraCE-21k simula-
tion scaled to match the larger magnitude of deglacial warming shown 
by the LGMR (Fig. 5 and Supplementary Information)1,2. The LGMR 
underscores the dramatic nature of anthropogenic warming, whose 
magnitude and rate appear unusual in the context of the past 24 kyr.
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Methods

Proxy compilation and screening
We collated a globally dispersed set of 573 SST proxy records span-
ning the past 24 kyr. Following ref. 10, we focus on geochemical prox-
ies for SST including alkenone U37

K'  (146 records), the TetraEther indeX 
of 86 carbons (TEX86; 28 records), the elemental ratio of Mg to Ca in 
planktic foraminifera (Mg/Ca; 129 records), and the oxygen isotopic 
composition of planktic foraminifera (δ18Oc; 270 records). As in ref. 10,  
we limit our analyses to these proxies because we have already devel-
oped Bayesian forward models for each of them18–21 that we can use 
in our paleoclimate data assimilation scheme (see the ‘Paleoclimate 
data assimilation’ section below). These data tend to cluster along 
coasts where sedimentation rates are high, and in regions where 
sampling efforts have historical focused (for example, the Atlantic 
sector and Northern Hemisphere). By comparison, data coverage 
across ocean interiors—in particular, the Pacific and (to a lesser 
extent) Southern Oceans—is sparse. For consistency, we recalibrated 
all age models using the Marine13 radiocarbon calibration curve39 
with the BACON age model program40 and local estimates of devia-
tions from the global marine radiocarbon reservoir age (∆R). This 
procedure also allowed us to generate ensembles (n = 1,000) of pos-
sible age models for each record that were used to propagate dating 
uncertainties into our data assimilation product (see sections ‘Pale-
oclimate data assimilation’ and ‘Proxy-only global mean temperature’ 
below).

Some screening of our proxy compilation was necessary to remove 
low-resolution, short and adversely situated proxy records. Generally 
speaking, we removed records whose median age resolution was less 
than 1,000 years or were less than 4,000 years long (Extended Data 
Fig. 1). However, the former constraint was relaxed for records situ-
ated in or near the Southern Ocean, where data coverage is sparse, 
so as to retain as many time series as possible from this undersampled 
region. To remove anomalous influences of sea ice on our proxy esti-
mates (in particular, the influence of sea ice on the δ18O of seawater20) 
we removed records situated at locations where preindustrial mean 
annual SSTs were less than 0 °C (a value assumed to roughly approx-
imate the perennial sea ice edge), as estimated from the World Ocean 
Atlas 2013 product41. This resulted in 4 δ18Oc records being removed 
from locations each north of 80°N. Following ref. 19, we also omitted 
all U37

K'  records situated north of 70°N or within the modern Arctic sea 
ice zone, due to known biases in the alkenone temperature proxy that 
are likely to arise from lipid contributions from Isochrysidales species 
living in sea ice42. We also removed two western Atlantic sites, 
OCE326-GGC26 (43°29′N, 54°52′W) and OCE326-GGC30 (43°53′N, 
62°48′W; ref. 43). While these U37

K'  records have been featured in prior 
mean global Holocene temperature reconstructions6, they show an 
extremely large (up to 10 °C) cooling over the Holocene that most 
likely reflects a shift in the Gulf Stream/Labrador Current boundary43. 
This poses a problem for our data assimilation technique, because 
CESM1.2 does not put this sharp boundary in the same place as obser-
vations. Assimilation of these sites thus has a tendency to cause a 
large regional bias in SSTs. Although similar issues arising in part from 
coarse model resolution probably afflict other frontal regions, no 
sufficient cause was found to warrant the removal of any additional 
records. All told, our selection criteria resulted in the removal of 
34 records.

Proxy-only global mean temperature reconstruction
To provide a point of comparison for our data assimilation results, 
we generated a reconstruction of global mean temperature change 
using only the proxy data, broadly following the methodology of  
ref. 44. This was done by first estimating a ‘reference’ preindustrial 
proxy value for each site and then appending each value at the top of 
its respective N × 1 proxy record. This produced an (Ni + 1) × 1 vector 

of proxy values for each site i, where the +1 denotes the appended 
preindustrial reference value. For sites with value(s) overlapping the 
preindustrial (that is, 0–4 kyr BP; see ref. 10), the preindustrial refer-
ence was computed as the 0–4 kyr mean proxy value. For sites without 
preindustrial overlap, reference proxy values were estimated by using 
the nearest core-top value18–21. As in ref. 44, if no core-top locations 
existed within a threshold 300 km radius, an observational preindus-
trial SST estimate was taken from the HadISST product45 and forward 
modelled to a proxy estimate. All (Ni + 1) × 1 vectors were then cali-
brated to SSTs using the Bayesian inverse models18–21. For the δ18Oc 
and TEX86 models19,20 we used prior standard deviation values of 10 °C, 
while for the U37

K'  and Mg/Ca models18,21 we used values of 5 °C and 6 °C, 
respectively. All prior standard deviation values are conservative, 
and only minimally impact the posterior. The Mg/Ca model, BAYMAG, 
also requires constraints on salinity, pH and bottom water calcite 
saturation (Ω). The BAYMAG package includes functions to estimate 
past changes in salinity and pH. Briefly, following refs. 21,46, these func-
tions scale the global sea level curve47 to an inferred LGM global change 
of 1.1 psu, then add this to the modern mean annual value of surface 
salinity for each site, as estimated from the World Ocean Atlas 201341. 
Similarly, to estimate changes in pH, BAYMAG scales the ice core CO2 
record48–53 to an inferred global increase of 0.13 pH units during the 
LGM, and then adds this curve to the modern mean annual value of 
surface pH estimated from the Global Ocean Data Analysis Project 
version 2 (GLODAPv254). Following ref. 21, Ω is estimated at each 
record’s bathymetric depth using the GLODAPv2 product and 
assumed to be constant through time. The δ18Oc model, BAYFOX, 
requires constraints on the time-evolution of δ18O of seawater (δ18Osw). 
For this, we first scaled the benthic stack of ref. 55 to an estimated 
change in global δ18Osw (arising from changes in global ice volume) 
of +1‰ at the LGM (18 ka) relative to the preindustrial following ref. 56.  
This scaled curve was then added to the modern mean annual δ18Osw 
value57 and interpolated in time for each site.

The posterior SST estimates produced by the Bayesian inverse 
models are a matrix of dimension (Ni + 1) × M, where M contains 1,000 
possible SST histories and core-top reference values for each time 
entry Ni + 1 of each i site. These matrices were sorted from least to 
greatest along dimension M, which preserves the ‘shape’ of the time 
series, after which a normally distributed analytical uncertainty of 
N (0,0.5) was added back to the sorted ensembles to account for 
laboratory precision (see also refs. 10,44). Finally, we converted each 
of our records to SST anomaly units relative to preindustrial values 
by subtracting the first row of the (Ni + 1) × M matrix (the preindustrial 
core-top estimate) from the remaining rows to generate an Ni × M 
matrix of SST anomalies.

To produce a GMST anomaly curve, SST anomaly values and asso-
ciated ages were randomly drawn from our ensemble of M poste-
rior values and our ensemble of 1,000 age models, respectively, and 
then sorted into contiguous 200-year bins spanning back to 24 ka. If 
more than one data point per record occurred in a given 200-year bin, 
those SST data points were averaged, to ensure that higher-resolution 
records did not bias the bin. Following refs. 4,10,58, the data within each 
time bin were binned by latitude, with the bin size randomly selected 
between 2.5 and 20, and then global average SST (GSST) was computed 
as the latitudinally weighted zonal average between 60°S and 60°N. 
Following refs. 4,10, GSST was then scaled by a value randomly chosen 
between 1.5 and 2.3 to transform the values to GMST. This Monte Carlo 
process was repeated 10,000 times, to propagate errors arising from 
the SST estimation, age modelling, latitudinal weighting, and GSST 
to GMST scaling.

Climate model simulations
The climate model priors are drawn from newly developed and 
pre-existing climate simulations with the water isotope-enabled Com-
munity Earth System Model, versions 1.2 and 1.3 (iCESM1.2 and 
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iCESM1.3). CESM1.2 is an updated version of CESM159, and CESM1.3 
contains further updates to the gravity wave scheme, cloud microphys-
ics, and radiation60. Critical for our purposes, iCESM explicitly simulates 
the transport and transformation of stable water isotopes (for example, 
H2

18O, HDO) in all of the component models, and has been shown to 
reproduce key features of climate and isotopes in present day and 
paleoclimate observations22. All of the iCESM simulations have a hor-
izontal resolution of 1.9 × 2.5 (latitude × longitude) in the atmosphere 
and land, and a nominal 1° in the ocean. Pre-existing iCESM simulations 
used in this study include the preindustrial and LGM simulations with 
iCESM1.361, the preindustrial, 3 ka, 18 ka and LGM simulations with 
iCESM1.210, and the last millennium simulation with iCESM1.262 
(Extended Data Table 1).

In addition, we developed new time-slice simulations using iCESM1.2 
of 16, 14, 12, 9 and 6 ka (Extended Data Table 1). For each time slice, 
the greenhouse gases (CO2, CH4 and N2O) were set to 200-year aver-
ages centred around the corresponding time from ice core recon-
structions63–65. Orbital parameters followed ref. 26. Ice sheet forcing 
was prescribed according to the ICE-6G reconstruction66, including 
effects from changes in land elevation and surface properties and the 
land–sea mask due to sea-level variations. For each time-slice simula-
tion, ocean temperature and salinity were initialized from published 
CESM1.2 simulations when available67. δ18Osw was initialized from the 
slice before, for example, δ18Osw of 18 ka branched from 21 ka. A spatially 
uniform correction was applied to salinity and δ18Osw to account for 
the ice-volume effect. The correction terms were derived by scaling 
changes in the global volume-mean salinity and δ18Osw between 21 and 
0 ka by the corresponding change in the global mean sea level47. Global 
volume-mean salinity and δ18Osw were 34.7 and 35.7 g kg−1 and 0.05 
and 1.05‰ in the 0 and 21 ka simulations, respectively68. The iCESM1.2 
time-slice simulations used preindustrial aerosol emissions because of 
the lack of reliable global reconstructions69. For a similar reason, the 
simulations used the preindustrial vegetation cover except for the 9 
and 6 ka slices (see description below). All these time-slice simulations 
were run for 900 years.

A Green Sahara was implemented in both the 9 and 6 ka simulations 
by prescribing a 100% spatial coverage of shrub and C4 grass at 10–25°N 
and 25–35°N, respectively. In addition, C3 grass over the Northern 
Hemisphere high latitude regions (northward of 50°N) was replaced 
with boreal trees in the 6 ka simulation. These vegetation changes were 
developed following recommendations from the Paleoclimate Mod-
eling Intercomparison Project and represent maximum possible vegeta-
tion expansion over the Sahara and the Northern Hemisphere according 
to the pollen and macro-fossil evidence70. To sample the uncertainty 
from vegetation, an additional 6 ka simulation was performed for 400 
years with the preindustrial vegetation cover, as another end-member 
of the mid-Holocene vegetation forcing. All the iCESM1.2 time-slice 
simulations were run with a prescribed satellite phenology in the land 
model due to the overall poor simulation of vegetation processes with 
a prognostic phenology71. The satellite observation derived vegetation 
phenology included leaf area and stem area indices, and vegetation 
heights.

In addition, two water hosing experiments were performed within the 
16 and 12 ka slices, respectively, to provide prior climate states for the 
millennial-scale events of the last deglaciation (that is, Heinrich 1 and 
the Younger Dryas). In the hosing experiments, 0.25 Sv (1 Sv = 106 m3 s−1) 
of freshwater with a δ18O composition of −30‰ (VSMOW) were applied 
over the northern North Atlantic (50–70°N). These experiments were 
run for 200 years. AMOC is largely shut down after 100 years in the 
water hosing simulations with a maximum transport at 34°S reduced 
to ~3 Sv from a background value of ~18 Sv.

Prior to using the simulations in our data assimilation, a paleoclimate 
calendar adjustment was applied to the monthly model output for all 
time slices to account for the effect of changing months on seasonal 
climatic expressions72.

Paleoclimate data assimilation
The data assimilation method incorporates an offline ensemble square 
root Kalman filter approach, following the methodology of ref. 10 using 
the data assimilation MATLAB code package DASH version 3.6.1 (source 
code available at https://github.com/JonKing93/DASH). We refer the 
reader to this previous work for a full mathematical description. Briefly, 
the method combines a set of prior climate states from our model 
simulations (Xprior) with new information from the proxy observations 
(the ‘innovation’, yobs – Yest) to compute a ‘posterior’ matrix of assimi-
lated past climate states, Xpost. The posterior mean and deviations from 
the mean are each computed separately (see refs. 10,73); the Kalman 
filter mean ‘update’ equation is:

X X K y Y= + ( − ). (1)post prior obs est

Xprior is an N × M matrix of prior climate states from iCESM, where 
dimension N contains the model grid point data for SST and SSS (both 
at monthly and mean-annual resolution), and mean-annual surface air 
temperature (SAT), δ18Osw, precipitation amount-weighted δ18O (δ18Op), 
and mean-annual precipitation rate collapsed into a concatenated 
vertical ‘state vector’, and dimension M represents the number of state 
vector ensemble members; the overbar in all cases denotes averaging 
across the ensemble dimension (producing, in this case, a vectorized 
ensemble ‘mean’ update73).

The P × 1 vector yobs consists of P globally dispersed δ18Oc, Mg/Ca, 
U37

K'  and TEX86 proxy observations. The P × M matrix Yest contains the 
corresponding set of P proxy estimates, generated from the model 
output from each M state using our Bayesian forward models. For 
details concerning the Bayesian models, the readers are referred to 
the original publications18–21. In brief, the forward model for δ18Oc 
requires monthly SST and mean annual δ18Osw. These δ18Oc values are 
computed on a species- and growing season-specific basis20 that allows 
us to explicitly account for foraminiferal seasonal preferences in our 
forward model proxy estimates. Both the U37

K'  and TEX86 models require 
only SST as inputs, with the former requiring monthly SST due to the 
seasonal response of U37

K'  production in the North Pacific, the North 
Atlantic and the Mediterranean19, and the latter only mean annual SST18. 
Finally, the forward model for Mg/Ca requires both monthly SST and 
SSS to compute species-specific growing season Mg/Ca values, in addi-
tion to sea surface pH, bottom water calcite saturation state (Ω), and 
the laboratory cleaning method. The latter is provided in the original 
publications, and SST and SSS are drawn from iCESM output. For pH 
and Ω, we follow the same procedure as the proxy-only reconstruction 
(described above).

The innovation ( yobs – Yest) represents the new information from the 
observations not already provided by the prior estimates. As shown in 
equation (1), these values are weighted by the N × P matrix K, the Kalman 
gain, which takes the general form:

K X Y Y Y R= cov( , ) × [cov( , ) + ] (2)prior est est est
−1

where ‘cov’ denotes the covariance expectation (approximated by an 
ensemble mean, with the ensemble mean removed). The P × P matrix 
R prescribes the error covariance associated with each proxy observa-
tion. Thus, the Kalman gain weights the innovation by the covariance 
of the forward-modelled proxy estimates with the prior climate states 
and the uncertainties of the prior-estimated proxy ensemble and the 
proxy observations. In our case, R is diagonal, that is, the errors are 
presumed to be independent. R is user-defined, but ideally based on 
an estimate of ‘true’ proxy uncertainties. Following ref. 10, in which the 
impact of different values of R on the posterior were systematically 
tested, we use the error values output from our Bayesian forward mod-
els scaled by 1/5, but further refine this by specifying a slightly different 
scaling factor for each proxy type. To determine these proxy-specific 
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factors, for each record we performed jack-knife (leave one record out) 
and ‘only-one record’ assimilation experiments (no R scalings applied) 
to assess the ability of any particular record to predict all others when 
that record was either removed, or solely retained, respectively. From 
these experiments, we then ranked each record by validating the 
only-one and all-but-one reconstructions against the non-assimilated 
proxies. This allowed assessment for the percent of tests for which this 
proxy resulted in ‘improvement’ (as denoted by the ratio of the poste-
rior to prior squared error of all predicted, independent proxies, where 
a ratio less than unity indicates improvement). Using these rankings 
for each proxy type, we then weighted each proxy-specific scaling 
factor by the improvement factor, and subsequently weighted these 
rankings by total record count to maintain an average R scaling of 1/5 
across all available proxy records. The specific scaling factors that we 
calculated were ruk = 3.13−1, rtex = 1.36−1, rmgca = 2.86−1 and r18o = 7.27−1, indi-
cating δ18Oc to be the most reliable (and numerous) proxy type.

Following refs. 10,17, we applied covariance localization to the assimi-
lation to limit spurious relationships between proxies and far-field 
regions. Validation testing suggested that a 24,000 km localization 
radius provided optimal posterior results for our dataset (see the ‘Inter-
nal and external validation testing’ section below). This differs from  
ref. 10, which used a narrower 12,000 km localization. The improvement 
we find using broader localization is likely to relate to the fact that fewer 
proxies are assimilated here per time step than in ref. 10.

For computing our full 24 kyr LGMR product, we calculated Xpost at 
200-year increments using the following approach. First, we selected 
80% of our proxy records at random for inclusion in our assimilation, 
with the remaining 20% of records withheld for statistical validation 
(see the ‘Internal and external validation testing’ section below). For 
each record, we randomly prescribed an age scale by drawing from the 
1,000 viable posterior BACON-derived age models. Second, for each 
200-year interval, yobs was compiled as all of the available proxy data 
points whose ages are within the bounds of the current reconstruction 
age interval. When multiple data points from a single record occurred 
within a given 200-year age-interval, these values were averaged. We 
then randomly selected M = 60 state vector ensembles from the iCESM 
output using a transient ‘evolving prior’ approach (see below) and used 
the Bayesian forward models to produce the matrix Yest. Xpost was then 
computed from yobs and Yest (equation (1)) with R in the Kalman gain 
(equation (2)) scaled to the appropriate proxy type. Finally, this process 
was repeated for a total 500 times for each time interval, to create a 
500-member LGM-to-present ensemble of posterior states. This Monte 
Carlo procedure ensures that proxy, age-model and model prior uncer-
tainties are included in the assimilated product. Since the proxy age 
model uncertainties in particular can be on the order of centuries 
(interquartile range of ~320–770 years across all data points), this sam-
pling procedure has the effect of smoothing the posterior ensemble 
mean time series on sub-millennial timescales, as in prior proxy-only 
analyses3,4,6.

Assimilation of the LGM-to-present climate evolution at 200-year 
intervals directly reflects our underlying proxy data compilation. ~96% 
of the proxy records have a median resolution that is higher than 200 
years (Extended Data Fig. 1). However, if all >60,000 compiled data 
points are considered together, >90% of the paleoclimate data have 
sample resolutions of ≤200 years. While ideally, the amount of time 
represented by the model prior would also equal 200 years, this would 
have considerably limited the number of model priors available (a 
maximum of 58 prior states across our all iCESM time-slice simulations, 
and as few as four priors for a given interval; Extended Data Table 1). 
To increase the number of iCESM priors available for assimilating our 
marine proxies while still roughly adhering to our reconstruction 
interval, we instead used 50-year average priors, following ref. 10. Prior 
experimentation by ref. 10 showed only marginal differences in LGM and 
preindustrial posteriors once time-averaging of our iCESM prior fields 
exceed interannual time periods, justifying this choice.

Assimilating Earth’s transient climate evolution between two funda-
mentally different glacial versus interglacial states presents a unique 
obstacle for offline paleoclimate data assimilation (which has largely 
focused on reconstructing the climate evolution of the Common Era17, 
a relatively stable background climate state9). In terms of Bayesian 
inference, the challenge is adequately assigning a collection of iCESM 
priors at each LGM-to-present reconstruction interval that reflects a 
reasonable prior belief in their viability. For example, a time interval in 
the late Holocene should not include glacial prior states that contain 
a Laurentide ice sheet, as the latter induces fundamental changes in 
spatial covariance that are not realistic for a deglaciated climate state. 
Conversely, deglacial prior states might include a range of possible 
Laurentide configurations.

To address this issue, we developed an ‘evolving prior’ approach. For 
each 200-year interval, we defined a normal probability density func-
tion (PDF) with a 1σ range of 4,000 years and a maximum cut-off range 
of 3σ (±12,000 years). The PDF is truncated to the range of our target 
time interval (24–0 ka), such that for the tail ends of the reconstruc-
tion interval, the PDF ends up being half-normal. We then sampled 60 
prior ages from this PDF and rounded them to 0, 3, 6, 9, 12, 14, 16, 18 
or 21 ka, the discrete time-slice intervals at which iCESM simulations 
are available (Extended Data Table 1). For each randomly drawn and 
rounded age, a model prior was selected (with replacement) from its 
corresponding iCESM time-slice simulation.

The 1σ range of 4,000 years was chosen to balance the need to include 
adequate variability in the prior while still excluding model priors that 
are not physically justified (that is, the inclusion of LGM priors when 
assimilating mid-late Holocene climatic states, and vice-versa). Similar 
to ref. 10, rank histogram analysis of our withheld validation proxies74 
suggested minimal mean bias of our model priors using this 1σ length 
scale, but an apparent lack of structural variance (as suggested by a 
U-shaped rank histogram; see Extended Data Fig. 2 of ref. 10). While 
increasing the length scale to include a broader range of priors would 
increase prior variance, validation testing indicated that the 4,000-year 
length scale was near-optimal, and also resulted in substantial improve-
ment over an ‘agnostic’ prior sampling scheme (for example, one that 
assigns equal probability of including a prior from any given iCESM 
timeslice; see the ‘Internal and external validation testing’ section 
below). We note that the variance in our model prior is fundamentally 
restricted by the use of a sole model (iCESM). Further work is needed 
to test the sensitivity of the LGMR reconstruction to the use of different 
isotope-enabled model priors (once available).

Internal and external validation testing
Statistical validation and tuning of our LGMR product was conducted in 
two ways, referred hereafter as ‘internal’ and ‘external’ validation. The 
first approach (‘internal’ validation) involves withholding 20% of the 
marine proxies per iteration (see the ‘Paleoclimate data assimilation’ 
section above), and then using the posterior SST, SSS and δ18Osw fields 
to forward model these withheld proxy records. These predicted proxy 
records were then compared with the actual proxy records using stand-
ard skill diagnostics: the coefficient of efficacy (CE; a value between −∞ 
and 1, where a value >0 is conventionally taken to represent skill over 
climatology), the squared Pearson product moment coefficient (R2), 
and the root mean square error of prediction (RMSEP). The computa-
tion of multiple posterior ensembles (that is, N = 500), each with 20% 
withholding, implies each proxy record was randomly withheld and 
internally validated on average 100 times. These tests yield, on average, 
CE values that are greater than 0 with no obvious signs of systematic 
spatial biasing, indicative of skill in our posterior assimilation above our 
evolving iCESM prior fields. On a global basis all posterior-predicted 
proxies exhibit a strong correspondence to observed values with 
R2 > 0.95 and slopes within 5% of their respective 1:1 lines (Extended 
Data Fig. 2), indicating a lack of systematic bias in the LGMR oceanic 
climatologies.
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Following ref. 10, we also use independent ice core and speleothem 

records of δ18Op to externally validate the LGMR. In this more stringent 
analysis, we compare posterior δ18Op to published ice core δ18O (which is 
taken as a direct indicator of precipitation-weighted mean-annual δ18Op, 
given that post-depositional processes such as isotopic diffusion75 and 
sublimation76 do not typically impact ice core record integrity across 
centennial and longer time scales) and speleothem δ18O, which is first 
converted to δ18Op via the methodology of ref. 77 (see also ref. 10). For 
the speleothem data, we used the SISAL version 1b database78. Records 
were included in our compilation solely on the basis that they span at 
least 18 kyr: that is, at least three-quarters of the LGMR reconstruction 
interval, ensuring overlap with the deglacial period (around 17–9 ka; 
Fig. 2). Record-specific details are provided in Extended Data Table 2. 
Following ref. 10, we focus on δ18Op deviations (∆δ18Op), which we generate 
by differencing all δ18Op values at each time slice interval relative to the 
0 ka baseline. This approach is premised on the expectation that δ18Op 
deviations should be adequately captured by LGMR10 despite known 
mean δ18Op biases in iCESM22. We then compare both prior and posterior 
∆δ18Op with observed ∆δ18Op at the iCESM timeslice intervals (3, 6, 9, 12, 
14, 16, 18 and 21 ka) using our statistical diagnostics of covariance and 
prediction error (R2 and RMSEP). Positive ∆R2 (that is, a stronger rela-
tionship with observed values in LGMR versus the prior) and negative 
∆RMSEP (that is, reduced prediction error in LGMR versus the prior) 
imply improvement in our LGMR posterior relative to the iCESM priors.

Overall, this external validation test indicates that LGMR substan-
tially improves over the prior, with a nearly 30% error reduction  
(RMSEPprior = 2.60‰; RMSEPposterior = 1.92‰) and approaching two times 
greater variance explained in with our posterior-predicted values rela-
tive to the prior (R2

prior = 0.37; R2
posterior = 0.62). Although much of the 

improvement is driven by ice core ∆δ18Op estimates (Extended Data 
Figs. 3 and 4), offsets with speleothem ∆δ18Op observations are also 
strongly reduced in LGMR relative to iCESM. The comparably poor 
temporal covariance shown by global speleothem ∆δ18Op values rela-
tive to ice cores (Extended Data Fig. 4; Extended Data Table 2) may 
reflect local-scale influences on speleothem ∆δ18Op records, such as 
groundwater storage, mixing, recharge and residence time varia-
tions; subgrid-scale topographic and (or) precipitation influences; 
and uncertainties arising from indirectly inferring δ18Op from δ18Ocalcite 
or δ18Oaragonite measurements77. In addition, the iCESM prior range of 
δ18Op across the LGM to present in the tropics is considerably smaller 
than in the high latitudes (for example, Extended Data Fig. 4), which 
might restrict the posterior solutions for the speleothems (see ref. 10).

We used external validation testing to choose both the covariance 
localization radius and evolving prior 1σ range (see the ‘Paleoclimate 
data assimilation’ section for a description of each). Between the two, 
our tests show that LGMR is most sensitive to the choice of localiza-
tion radius. We tested values between 6,000 km and infinite (that 
is, no localization) and found a relatively broad localization cut-off 
(24,000 km) is near-optimal (Extended Data Table 3). In contrast, 
LGMR shows comparably less sensitivity to choice of the 1σ range for 
sampling iCESM priors, with acceptable external validation scoring 
for values between 1σ = 2,000–6,000 years (Extended Data Table 3). 
For our final LGMR product we chose a value of 1σ = 4,000 years as 
this was shown to provide near-optimal validation scoring (Extended 
Data Table 3), while also constituting a reasonable ‘middle ground’ 
between enabling adequate variance amongst iCESM model priors 
throughout the past 24 kyr while excluding physically unjustifiable 
states (see discussion above).

Data availability
All LGMR and associated proxy data are publicly available via the 
National Oceanic and Atmospheric Administration (NOAA) Pale-
oclimatology Data Archive (https://www.ncdc.noaa.gov/paleo/
study/33112). Source data are provided with this paper.

Code availability
The MATLAB code used for the reconstruction (DASH) are publicly 
available (https://github.com/JonKing93/DASH), as are all accompany-
ing Bayesian proxy forward models (BAYSPAR, BAYSPLINE, BAYFOX, 
and BAYMAG) used in this study (https://github.com/jesstierney). 
The iCESM1.2 model code is available at https://github.com/NCAR/
iCESM1.2.
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Extended Data Fig. 1 | Time resolution and temporal coverage of the SST 
proxy data compilation. a, Histogram of record resolution (denoting the 
median sample resolution for each record), computed for each proxy type. b, 
Histogram of record length for each proxy type.



-5 0 5

Observed 18Oc

-5

0

5

P
re

di
ct

ed
 

18
O

c

0 0.5 1

Observed UK'
37

0

0.5

1

P
re

di
ct

ed
 U

K
'

37

RMSEP = 0.07

-1 0 1 2
Observed Mg/Ca

-1

0

1

2

P
re

di
ct

ed
 M

g/
C

a RMSEP = 0.18

0.2 0.4 0.6 0.8
Observed TEX86

0.2

0.4

0.6

0.8

P
re

di
ct

ed
 T

E
X

86 RMSEP = 0.05

6 ky
12 ky
18 ky
24 ky

0 0.5 1

R2

0 0.5 1

R2

0 0.5 1

R2

0 0.5 1

R2

(a)

(b)

(c)

(d)

Extended Data Fig. 2 | Statistical validation of randomly withheld marine 
geochemical proxies. a, From left: observed versus forward-modelled δ18Oc 
mean values for each site using the posterior data assimilation estimates. 
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Extended Data Fig. 3 | Validation using independent δ18Op ice core and 
speleothem records. a, 3 ka–preindustrial (PI; 0 ka) posterior ∆δ18Op field; 
overlying markers show the observed 3 ka–PI ∆δ18Op values from speleothems 
and ice cores. Only records spanning at least 18 of the past 24 kyr are shown. 
∆R2 and ∆RMSEP values denote the change in observed versus posterior 
assimilated ∆δ18Op values relative to the prior (that is, iCESM) estimated values. 

b–h, As in a, but for values differenced at 6, 9, 12, 14, 16, 18 and 21 ka versus the 
PI, respectively. I, All observed ∆δ18Op versus model prior values; dashed line 
indicates the 1:1 relationship. j, All observed ∆δ18Op versus posterior values, 
which show a strong improvement in ∆R2 and ∆RMSEP over the prior. Note that 
each scatter point shown in panels i, j corresponds to an external validation site 
shown in panels a–h.
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Extended Data Fig. 4 | Time-comparison of posterior LGMR δ18Op with 
selected δ18Op ice core and speleothem records. Uncertainty ranges denote 
the ±1σ level (dark) and 95% confidence range (light) from the LGMR ensemble. 
Also shown for comparison are the full range (shaded grey) and median iCESM 
time slice prior values (50-year means) for each site. See also Extended Data 
Table 2.
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Extended Data Fig. 5 | Influences on global surface temperature evolution 
during the past 24 kyr. a–c, Spatial LGM-to-present correlations between 
surface air temperature (SAT) and combined greenhouse gas24 and global 
albedo radiative forcing13 (a); summer length at 65°S;27 (b); and the –1 × 231Pa/230 
Th AMOC proxy index from Bermuda Rise29–31 (c; shown such that SAT 
correlations are positive with AMOC strength).
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Extended Data Fig. 6 | Proxy-specific GMST reconstructions and 
comparison of Holocene GMST trends. a, δ18Oc, U37

K' , and Mg/Ca-derived GMST 
reconstructions, derived using both the proxy-only (PO) and data assimilation 
(DA) approaches. In a, the shaded regions show the ±1σ range across n = 50 
ensemble members for the DA-based GMST estimates, and n = 10,000 
realizations for the PO-based GMST estimates (note uncertainty ranges are not 
shown for the dotted-dashed curves). b, Sensitivity of the Holocene GMST 
evolution to the removal of proxies situated in contiguous 15° latitudinal bands, 

both for the PO and DA approaches. c, Sensitivity of the DA-based Holocene GMST 
evolution to proxy seasonality (computed by fixing foraminifera growth 
seasonality to either preindustrial (PI) or LGM monthly SSTs for Mg/Ca and 
δ18Oc, or by removing records with seasonal alkenone production for U37

K' ),  
and to the ‘pooled’ foraminifera species SST calibrations of refs. 20,21 
(see Supplementary Information). All ∆GMST time series denote deviations 
relative to the past 2 kyr.
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Extended Data Fig. 7 | Hemispheric variability during the past 24 kyr. 
Ensemble distribution (n = 500) of LGMR-estimated Northern Hemisphere 
(NH; red) and Southern Hemisphere (SH; blue) mean hemispheric temperatures 
during the past 24 kyr. Shown at top is the surface temperature spatial 
difference for the Bølling–Allerød (BA) and Younger Dryas (YD) intervals. 

Range of hemispheric last deglacial and interglacial onset timings are shown as 
histograms at bottom. The LGMR is plotted alongside reconstructed decadal 
hemispheric temperatures from the last millennium reanalysis v2.117 and 
HadCRUT5 observational product11.



Extended Data Table 1 | Information on the iCESM simulations used for generating model priors

Greenhouse gas concentrations are in ppm for CO2 and ppb for CH4 and N2O. Global mean seawater δ18O (δ18Osw) is in ‰ relative to the Vienna Standard Mean Ocean Water (VSMOW).  
See Methods for details of the implementation of vegetation and freshwater forcing in related simulations.



Article
Extended Data Table 2 | Geographical and site identification information for ice core and speleothem δ18Op records used for 
LGMR external validation

Data from refs. 79–102.



Extended Data Table 3 | External validation statistics associated with different choices of covariance localization and the 1σ 
‘length-scale’ range of the evolving prior sampling

∆R2 and ∆RMSEP values denote the change in observed versus posterior assimilated ∆δ18Op values relative to the prior iCESM estimated values; larger ∆R2 and smaller ∆RMSEP thus denote 
greater improvement in the assimilated posterior relative to iCESM (see Extended Data Fig. 2i, j for plotted LGMR values). For localization testing, listed ∆R2 and ∆RMSEP values represent the 
median across all (n = 6) length-scale tests; for length-scale testing, listed ∆R2 and ∆RMSEP values represent the median across all (n = 8) localization tests.
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