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Abstract Sea ice plays multiple important roles in regulating the global climate. Rapid sea ice loss in the
Arctic has been documented over recent decades, yet our understanding of long‐term sea ice variability and its
feedbacks remains limited by a lack of quantitative sea ice reconstructions. The sea ice diatom‐derived biomarker
IP25 has been combined with sterols produced by open‐water phytoplankton in the PIP25 index as a sea ice proxy
to achieve semi‐quantitative reconstructions. Here, we analyze a compilation of over 600 published core‐top
measurements of IP25 paired with brassicasterol and/or dinosterol across (sub‐)Arctic oceans to calculate a new
ln(PIP25) index that correlates nonlinearly with sea ice concentration. Leveraging sediment trap and sea ice
observational studies, we develop a spatially varying Bayesian calibration (BaySIC) for ln(PIP25) to account for
its non‐stationary relationship with sea ice concentration and other environmental drivers (e.g., sea surface
salinity). The model is fully invertible, allowing probabilistic forward modeling of the ln(PIP25) index as well as
inverse modeling of past sea ice concentration with bi‐directional uncertainty quantification. BaySIC facilitates
direct proxy‐model comparisons and palaeoclimate data assimilation, providing the polar proxy constraints
currently missing in climate model simulations and enabling, for the first time, fully quantitative Arctic sea ice
reconstructions.

Plain Language Summary A lipid termed IP25 is produced by microorganisms residing in Arctic sea
ice and deposited in underlying sediments. By measuring its concentration in sediment cores,
palaeoclimatologists can interpret past sea ice conditions at the core locations. When multiple cores across the
Arctic are analyzed, palaeo sea ice extents can be reconstructed. This study refines the quantitative relationship
of this proxy with sea ice, taking into account seasonal biases and other influencing environmental factors. A
Bayesian (probabilistic) approach is used to quantify the uncertainties in the calibration. The new model enables
quantitative Arctic sea ice reconstructions and helps us understand its long‐term variability.

1. Introduction
Sea ice is a key component of the climate system, affecting planetary albedo (Curry et al., 1995), air‐sea gas and
heat exchanges (Ivanov et al., 2019; Rysgaard et al., 2011), and the thermohaline circulation (Mauritzen &
Häkkinen, 1997), with impacts extending far beyond the polar regions. In recent decades, rising temperatures in
the Arctic, caused by anthropogenic greenhouse gas emissions and amplified by the ice‐albedo feedback, have led
to rapid sea ice loss (Stroeve & Notz, 2018), yet our understanding of its long‐term variability remains limited by
our short‐term observations (de Vernal et al., 2020). Furthermore, future projections for the Arctic Ocean suggest
that it will become practically ice‐free in summer at least once before the year 2050 under all emission scenarios,
but the multi‐model spread in simulated sea ice extent remains wide (Notz & SIMIP Community, 2020). To better
understand changes in sea ice and associated feedbacks, as well as to improve predictions, quantitative palaeo sea
ice reconstructions are needed.

Numerous proxies in marine sediment cores have been used to infer past sea ice conditions (e.g., de Vernal,
Gersonde, et al., 2013), among which IP25 (Ice Proxy with 25 carbon atoms) is one of the most commonly
employed. The highly branched isoprenoid monoene is produced by sympagic diatoms during the spring sea ice
algal bloom and released into the water column in early summer when sea ice melts (Belt et al., 2007, 2008, 2013;
Brown et al., 2011, 2016). Having been detected in sediments across the Arctic, IP25 has been used as a proxy for
seasonal sea ice in palaeo reconstructions extending as far back in time as the late Miocene (Stein et al., 2016).
Within the Arctic and sub‐Arctic regions, the absence of IP25 has been attributed to two opposing scenarios. On
the one hand, it may reflect year‐round ice‐free conditions, which do not support the growth of IP25 producers
(Belt et al., 2007; Belt & Müller, 2013; Müller et al., 2011). On the other hand, perennial sea ice cover has been
hypothesized to hinder diatom growth by reduced light penetration through thick and dense ice (Belt et al., 2007;
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Belt & Müller, 2013; Müller et al., 2009, 2011). This would limit the presence of IP25 close to the ice edge or in the
marginal ice zone (MIZ; Müller et al., 2009, 2011).

To differentiate between the two contrasting sea ice conditions that preclude IP25 production, pelagic phyto-
plankton biomarkers have been used as indicators of (seasonal) open water conditions (e.g., Müller et al., 2009,
2011; Navarro‐Rodriguez et al., 2013; Volkman, 1986; Volkman et al., 1998). These include brassicasterol (24‐
methylcholesta‐5,22E‐dien‐3β‐ol) and dinosterol (4α,23,24‐trimethyl‐5α‐cholest‐22E‐en‐3β‐ol), which are
mainly derived from diatoms, haptophytes, cryptophytes, and dinoflagellates during the summer phytoplankton
bloom (e.g., Goad et al., 1983; Volkman, 1986; Volkman et al., 1993, 1998). Müller et al. (2011) first proposed
coupling them with IP25 in the PIP25 (phytoplankton‐IP25) index to achieve quantitative sea ice reconstructions.
The index is calculated as follows:

PIP25 =
[IP25]

[IP25] + c [phytoplankton biomarker]
, (1)

where c is conventionally taken as the ratio of the mean IP25 and phytoplankton biomarker concentrations of the
sediment samples under study. This factor was introduced to compensate for the substantial difference between
the concentrations of IP25 and phytoplankton biomarkers: the former is typically lower, ascribed to its source‐
specificity in contrast to the multiple origins of the latter (Müller et al., 2011; Navarro‐Rodriguez et al., 2013).

The PIP25 index is, by definition, limited between 0 and 1. As described by Belt and Müller (2013), high PIP25
values result from high IP25 and low sterol concentrations, indicative of predominantly ice‐covered conditions;
conversely, low PIP25 values arise from low IP25 and high sterol concentrations, which suggest mostly ice‐free
conditions. Intermediate PIP25 values are taken to represent ice‐margin conditions. In addition to distinguishing
between opposite sea surface conditions, the sterols serve a second role in the PIP25 index as proxies for pro-
ductivity in the surface ocean (Belt & Müller, 2013; Müller et al., 2011). By normalizing IP25 against primary
productivity, PIP25 indices can be compared across different Arctic regions.

To realize the full potential of the PIP25 index in quantitative Arctic sea ice reconstructions, a robust calibration is
needed. Since the initial correlation reported by Müller et al. (2011), numerous studies have been undertaken to
improve and validate the model's applicability in different regions (e.g., Kolling et al., 2020; Navarro‐Rodriguez
et al., 2013; Stoynova et al., 2013; Xiao et al., 2013, 2015) and in deep time (e.g., Stein et al., 2016, 2017a, 2017b,
2017c; Hoff et al., 2016; Knies et al., 2014; Kremer, Stein, Fahl, Bauch, et al., 2018; Kremer, Stein, Fahl, Ji,
et al., 2018; Stein & Fahl, 2013), yet problems associated with the c factor and regional variability persist,
hindering the wider use of this proxy. Furthermore, while possible influences of other environmental variables
(e.g., salinity) on biomarker production and preservation have been acknowledged (Belt, 2018; Ribeiro
et al., 2017; Xiao et al., 2013, 2015), they have rarely been included in calibrations, potentially underrating the
aptness of PIP25 for reconstructing sea ice conditions (Su et al., 2022). As new biomarker data sets continue to be
published and our understanding of the proxy system evolves, existing calibrations need to be revisited to take
into account such evidence and insights, which may further help address previously identified issues.

At the same time, recent advances have been made in proxy system model (PSM) development using Bayesian
statistical methods, with forward and inverse models developed for several commonly used marine geochemical
palaeoclimate proxies (e.g., Malevich et al., 2019; Tierney et al., 2019; Tierney & Tingley, 2014, 2018). The
probabilistic approach employed by these models enables more rigorous quantification of calibration un-
certainties and their propagation into proxy estimates or climate reconstructions. In addition, such PSMs facilitate
proxy‐model comparisons (e.g., Hoem et al., 2022) and palaeoclimate data assimilation (e.g., Osman et al., 2021),
allowing the use of proxy data to validate or constrain model simulations.

Here, we develop a Bayesian calibration for IP25 (and associated phytoplankton biomarkers) to model the
relationship between the sea ice proxy and environmental factors using recently compiled pan‐Arctic biomarker,
sea ice and oceanographic variable data sets. The Bayesian framework supports uncertainty quantification and
propagation to model predictions in both the forward and inverse directions. The model, called BaySIC (Bayesian
Sea Ice Concentration), is amenable to incorporating additional core‐top data as they become available, as well as
other environmental drivers that may be identified in future investigations. We demonstrate its applications with
examples and discuss implications for palaeo‐sea ice reconstruction.
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2. Data Compilation
2.1. Biomarkers in Surface Sediments

We update the pan‐Arctic surface biomarker database of Kolling et al. (2020) (Belt et al., 2013, 2015; Méheust
et al., 2013; Müller et al., 2011; Navarro‐Rodriguez et al., 2013; Pieńkowski et al., 2017; Smik et al., 2016; Xiao
et al., 2013, 2015) with paired IP25‐brassicasterol and ‐dinosterol core‐top measurements from recent literature
(Harning et al., 2023), including the location (water depth, latitude, longitude), total organic carbon (TOC)
content, and concentrations of the biomarkers normalized to gram of sediment (μg/gSed) and/or TOC (μg/gTOC).
The expanded database consists of 644 surface sediment samples collected between 38.00°N and 89.98°N and
across the full range of longitudes (Figure 1; Fu et al., 2025b). Samples within the same sea ice grid cell (see

Figure 1. Locations of published core‐top paired IP25 and brassicasterol and/or dinosterol measurements, colored by (a) study
of origin, and concentration of (b) IP25, (c) brassicasterol, and (d) dinosterol, normalized to total organic carbon (TOC)
content (μg/gTOC). In panel (a), triangle = concentration normalized to gram of sediment only, and circle = concentration
normalized to TOC content also available.
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Section 2.2) are averaged to avoid overrepresenting densely sampled areas. This results in 551 effective core‐top
samples with paired IP25‐brassicasterol measurements and 432 with paired IP25‐dinosterol measurements for our
calibration model.

A data set published by Stoynova et al. (2013) was excluded from the Kolling et al. (2020) database as it was
obtained with different biomarker extraction solvents and method, and contained measurements inconsistent with
those of other studies in the same area (e.g., Navarro‐Rodriguez et al., 2013; Xiao et al., 2015). More recently, a
data set for the East Siberian Sea was made available by Su et al. (2022). However, it records distinct brassi-
casterol and dinosterol distributions, with the former more closely resembling the IP25 distribution. The authors
hypothesized that the divergence emerged from differential impacts of estuarine turbidity on the respective sterol
producers, but this is not observed in other data sets from river mouth settings (e.g., Xiao et al., 2013, 2015). In
comparing the brassicasterol/dinosterol ratio of each data set, we find that the Su et al. (2022) data deviates from
the rest of the database (Figure S1 in Supporting Information S1). Since the cause of this discrepancy remains
conjectural, we refrain from incorporating this data set into our database.

Since biomarker concentrations are affected by sedimentation rates, it has been recommended that they be
normalized to TOC contents prior to comparisons across space and time (Müller et al., 2011). The PIP25 index
approach further circumvents comparing absolute concentrations by considering relative concentrations. When
calculating PIP25, the same normalization should be applied to both the phytoplankton biomarker and IP25
concentrations. Since the normalization factors are canceled out in the ratios (Belt, 2018), PIP25 indices computed
from measurements normalized in either way are directly comparable. However, as the biomarker concentrations
are typically several magnitudes lower when normalized to gram of sediment rather than TOC content, the re-
ported measurements are less precise, especially near the detection limit. We therefore use measurements reported
in μg/gTOC where available for our calibration.

Both brassicasterol and dinosterol are commonly used as the phytoplankton biomarker in the PIP25 index
(PBIP25 and PDIP25, respectively) and, in general, their distributions are similar across the Arctic (Figure 1).
However, the sources of brassicasterol are more diverse than those of dinosterol: the former is produced by a
range of marine and freshwater phytoplankton as well as higher plants (Volkman, 1986), while the latter is
mainly synthesized by marine dinoflagellates (Nichols et al., 1984; Volkman et al., 1993, 1998). Brassicasterol
found in marine sediments may have been transported by rivers from a lacustrine or terrestrial origin (Fahl
et al., 2003; Hörner et al., 2016), thus appearing in higher concentrations than expected for the local sea surface
conditions. Brassicasterol may also originate from sea ice diatoms (Belt et al., 2013, 2018), potentially
undermining its role as an open ocean proxy. We develop calibrations for both PBIP25 and PDIP25 but, due to the
broader and more variable sources of brassicasterol, focus the discussion on the latter.

We note that the sterol extraction method (with dichloromethane/methanol) used across all studies has recently
been suggested to underestimate concentrations (Koseoglu, 2019) (Figure S2 in Supporting Information S1).
However, since sterol data obtained with the more comprehensive method (using potassium hydroxide) remain
limited, and as only relative concentrations are of importance for their role as a normalization factor in the PIP25
index, measurements acquired with the conventional method are used here for the calibrations in order to
investigate Arctic‐wide trends and to maintain consistency across data sets. Should sufficient data collected with
the saponification step become available in the future, the calibrations may be updated to correct for any inac-
curacies in the existing core‐top sterol concentrations.

2.2. Sea Ice

Sea ice concentrations (SIC) corresponding to the core‐top measurements are taken from the NOAA/NSIDC
Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 (Meier et al., 2021). The data are on
a 25 km × 25 km grid and represent the percentage of ocean surface area covered by sea ice. For each core
location, the monthly SIC from January 1979 to December 2022 in the nearest grid cell are drawn. The great‐
circle distance between each biomarker measurement and SIC observation is less than 100 km in all but seven
cases. Among these, six samples are taken from locations in the North Pacific Ocean beyond the data coverage.
The matched SIC data indicate year‐round ice‐free conditions, as expected for these localities; thus, the samples
are retained in our analysis. The remaining sample in Lake Melville is paired with SIC data for the ocean and is
consequently excluded from the database. Climatologies are created by computing the mean monthly SIC from
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1979 to 2000 and from 1979 to 2022. In each case, the interquartile range (IQR) is also computed as a non‐
parametric measure of year‐to‐year sea ice variability.

Complementary SIC data sets are obtained from the Gridded Monthly Sea Ice Extent and Concentration product,
Version 2 (Walsh et al., 2019), which combines various historical sources such as ship reports, maps by
oceanographers, charts from meteorological institutes, etc. to provide an Arctic‐wide SIC record from 1850
onwards. The data are on a 1/4°× 1/4° grid, and the same procedures are followed to produce climatologies for the
core locations. Since the product builds on more complete sea ice observations from 1953, we generate clima-
tologies from 1950 to 2000 and from 1950 to 2017.

2.3. Sediment Trap Time Series

To explore proxy seasonality, we also collate measurements of IP25 fluxes in nine sediment traps deployed across
the Arctic (Bai et al., 2019; Belt et al., 2008; Gal et al., 2022; Koch et al., 2020; Luostarinen et al., 2023; Nöthig
et al., 2020; Rontani et al., 2016) (Figure 2). Where multiple traps positioned at the same location are found, data
from the deepest one are taken to more closely reflect the fluxes that eventually reach the sediments. Each trap has
a different sampling period, ranging from 1 month to a year (see Table S1 in Supporting Information S1 for
details). We focus on the spring and summer months, when IP25 is produced and released. Since the time series are
approximately normally distributed, we fit a normal probability density function (PDF) to each of them to
facilitate composite analysis. Monthly SIC during the sampling period are extracted from the NOAA/NSIDC
record. In each case, data from grid cells within a 100 km radius of the trap location are compiled to assess

Figure 2. (a–i) Sediment‐trap IP25 flux time series and the fitted normal probability density function, as well as the
corresponding sea ice concentration (SIC) trend and uncertainty associated with lateral transport (range of SIC found within a
100 km radius). The map shows the location of each sediment trap colored by the corresponding timing of the peak IP25 flux,
and spatial variations in the timing of the first SIC decrease (2001–2022, matching the sampling periods of the sediment traps).
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regional sea ice variability and to account for lateral advection (Salter et al., 2023). For sediment traps in the
eastern Fram Strait, the source areas simulated by Salter et al. (2023) spanned sea ice conditions from completely
ice‐free to mostly ice‐covered at any given time during the sampling period. To avoid dilution of the seasonal
signal by lateral transport, we exclude data from this area, including those previously collected by Lalande
et al. (2016), from our composite analysis.

2.4. Oceanographic Variables

Environmental parameters such as temperature, salinity, and nutrient levels may promote or limit productivity,
exerting additional influence on biomarker concentrations. To test for any such effects, measurements of these
variables are acquired from World Ocean Atlas 2018 (Boyer et al., 2018; Garcia et al., 2019; Locarnini
et al., 2019; Zweng et al., 2019). Temperature and salinity data are available at quarter‐degree grid resolution,
while silicate, nitrate, and phosphate data are available at one‐degree grid resolution. Each core location is
matched to the nearest grid cell to derive the monthly climatologies. For temperature and salinity, these are
averages of six decadal means from 1955 to 2017; for the nutrients, these are averages of all available data. Data
from the top 10 m of the water column (at 0 m, 5 m, and 10 m water depth) are averaged to represent sea surface
conditions.

3. Data Exploration
3.1. Nonlinearity of the PIP25 Index

Following previous studies (e.g., Kolling et al., 2020; Müller et al., 2011; Navarro‐Rodriguez et al., 2013), we
investigate the relationship between PIP25 and SIC by assessing their correlation across space in contemporary
records. Existing calibrations have sought to establish a positive linear relationship between the two by invoking
the balance factor, c; however, complications arise with its use. For example, the factor has been found to vary
both as a function of core section and location (e.g., Belt et al., 2015; Navarro‐Rodriguez et al., 2013), such that
the PIP25 value for a given sediment sample changes with the particular data set under consideration. This ne-
cessitates the recalculation of PIP25 in each investigation that expands a previous data set, which affects the
inferred SIC. As Belt and Müller (2013) pointed out, the approach is particularly problematic for applications on
geologic time scales, as the c factor may change significantly with the length of the core under study. Furthermore,
the factor is susceptible to negative impacts of outlying biomarker measurements (Navarro‐Rodriguez
et al., 2013). Due to these unresolved issues, the PIP25 index has thus far remained a semi‐quantitative proxy for
sea ice.

Another difficulty in applying linear calibration models for past sea ice reconstruction lies in the highly variable
slope and intercept across different regions (e.g., Müller et al., 2011; Smik et al., 2016; Xiao et al., 2015). To aid
interregional comparisons, Xiao et al. (2015) proposed Arctic‐wide c values (0.11 for PDIP25), which were
subsequently updated by Kolling et al. (2020) using a larger data set (0.203). Although similar values (0.238) can
be calculated for our expanded database, marked regional differences persist in the linear correlation with SIC
(not shown), preventing a pan‐Arctic calibration. More generally, we show that the relationship between PIP25
and SIC remains nonlinear following correction across a broad range of c factors (Figure 3a and Figure S3 in
Supporting Information S1). Thus, while the exact value taken for such a uniform factor may be revised by future
core‐top studies, it is unlikely that the relationship can ever be fully linearized.

In light of the problems associated with the c factor, we omit its use to develop a robust calibration. To reduce the
positive skewness of the PIP25 data (calculated without c), we transform the ratio using the natural logarithmic
function. The index then becomes:

ln(PIP25) = ln(
[IP25]

[IP25] + [phytoplankton biomarker]
), (2)

where the phytoplankton biomarker is either brassicasterol or dinosterol. Our data set contains samples where IP25
and/or the sterols are not detected. Although the biomarkers are recorded as absent in these cases, they may be
present at concentrations below their respective limits of detection, which are expected to vary between labo-
ratories but are rarely reported. Thus, the minimum non‐zero IP25 concentration in the data set, taken as the best
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approximation of the detection limit, is added to all IP25 measurements to enable the log transformation. The same
treatment is applied to brassicasterol and dinosterol measurements to maintain consistency in the ratio.

Using our expanded database, which includes samples from permanently ice‐free and ice‐covered regions in the
sub‐Arctic and central Arctic, we find that the new ln(PIP25) index exhibits a sigmoidal (i.e., logistic‐like)
relationship with SIC: as ln(PIP25) approaches 0, SIC tends to 1; likewise, as ln(PIP25) approaches negative
infinity, SIC tends to 0 (Figure 3b). The suitability of the logistic function in describing the relationship can be
understood intuitively, as SIC values are inherently limited between 0 and 1. There is a clear transition from SIC=
0 to 1 at ln(PIP25) ∼ − 4, which mirrors the relatively narrow MIZ in nature. As illustrated subsequently, this
abrupt shift can be well‐characterized by logistic regression coefficients, enabling more effective differentiation
between ice‐free and ice‐covered conditions based on ln(PIP25) values. Nevertheless, some variability is still
evident in the core‐top data. This may be partly attributable to the inherent ambiguity of the PIP25 ratio: the same
value can be derived from coevally high or low concentrations of IP25 and sterols, caused by different sea ice
conditions (Müller et al., 2011). To mitigate this, it has been recommended that individual biomarker records be
interpreted along with PIP25 (Belt & Müller, 2013; Müller et al., 2012a, 2012b).

3.2. Uncertainties in SIC Observations

As the proxy signals are taken to reflect the dominant sea ice conditions over the calibration period, ln(PIP25) is
compared against the climatological mean SIC. However, near the ice edge, the year‐to‐year variability in SIC can
be significant: a location may be completely ice‐covered in 1 year and ice‐free in the next. In such cases, the core‐
top ln(PIP25) value represents a mixture of variably recorded opposing sea ice conditions, and its relationship with
the corresponding mean SIC value is uncertain. To incorporate this source of uncertainty in the calibration, we
calculate the IQR of the SIC data over the calibration period as a non‐parametric measure of its year‐to‐year
variability (Figure 3). Data points with high IQR values (high SIC variability) are associated with more un-
certainties and thus are considered less reliable in the regression.

Although the core tops mostly sample the same sediment interval (1 cm, with exceptions in data sets from Harning
et al. (2023) and Kolling et al. (2020)), as sedimentation rates across the Arctic and sub‐Arctic oceans span a wide
range, the samples would have accumulated over different periods, ranging from a few years to several millennia
(Stein, 2008; Wegner et al., 2015). As a result, most of the core tops represent coarse time composites that cannot
be paired with SIC data over the same period. Considering the accelerated sea ice loss over the last couple of
decades (Stroeve & Notz, 2018), we avoid using SIC data from this period in our calibration to prevent the
potential overrepresentation of anthropogenic signals. The period 1979–2000 is hence chosen to maximize the
limited satellite observations available. This means that samples recently collected from regions with high
sedimentation rates (>0.1 cm/year) may be mismatched with SIC from an earlier period; however, such rapid

Figure 3. Mar‐Apr‐May sea ice concentration (SIC), 1979–2000, versus (a) PDIP25 calculated with the c factor and
(b) ln(PDIP25), colored by sea surface salinity (SSS). Bubble size is inversely proportional to the interquartile range of the
SIC over the 22‐year calibration period.
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sediment deposition is rare in the Arctic (Stein, 2008; Wegner et al., 2015). In our database, only Belt et al. (2015)
reported accumulation rates of this order, for sites in the Barents Sea. In general, all matched SIC values remain
estimates of the real conditions recorded by the core tops, with the largest discrepancies expected in areas that
experienced dramatic SIC changes over recent decades to centuries (e.g., the MIZ). The full satellite SIC record
(1979–2022) and data sets derived from historical sources (1950–2000 and 1950–2017) are also used to evaluate
model sensitivity to the calibration period.

Pairing core‐top biomarker measurements with SIC observations from the nearest satellite grid assumes minimal
lateral transport. This assumption is valid in ice‐covered regions, such as the Eurasian Basin, where vertical
transport has been shown to account for the majority of the carbon fluxes to the sediments (Belt & Müller, 2013;
Legendre et al., 1992; Nöthig et al., 2020). In other locations, however, lateral advection and resuspension have
been found to affect biomarker fluxes, for example, on the Lomonosov Ridge (Fahl & Nöthig, 2007; Fahl &
Stein, 2012) and in the eastern Fram Strait (Lalande et al., 2016; Salter et al., 2023). By modeling particle tra-
jectories, Salter et al. (2023) showed that a source area could have a radius of approximately 100 km. This
particularly complicates the interpretation of samples near the MIZ, where such a large integration area may span
the full gradient of SIC values, resulting in a mixed proxy signal. In reality, due to variable lateral transport rates
across the Arctic, each core top likely integrates biomarker fluxes over a different area, which may also have
changed through time. As this source of uncertainty is poorly constrained, we do not explicitly include it in our
model; nonetheless, it mainly affects core tops near the ice edge, which are already down‐weighted in the
regression based on their IQR values.

3.3. Spatiotemporal Variation in Proxy Seasonality

Given that biomarker production and IP25 release primarily occur during algal blooms and ice melt, respectively
(Belt et al., 2008, 2013; Brown et al., 2011, 2016), the proxies are biased toward seasonal sea ice conditions

Figure 4. Schematic diagrams of the IP25 proxy system (a) in spring/before sea ice breakup and (b) in summer/during sea ice
breakup, as well as composite probability density functions (PDFs) of IP25 fluxes aligned to (c) calendar months and
(d) months relative to the first month of sea ice concentration (SIC) decrease. Dashed line denotes the 5th percentile of the PDF.
Shaded area shows the range of SIC observed across all sediment traps, and the trend line represents the error‐weighted mean,
calculated based on the range of SIC found within a 100 km radius of each trap during the collection period. Arrows indicate the
approximate periods corresponding to those illustrated in panels (a, b).
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(Figures 4a and 4b). As sympagic algal blooms, sea ice thawing, and pelagic algal blooms do not occur simul-
taneously, the seasonal signal recorded by ln(PIP25) is a mixture of these timings and is not straightforward to
characterize. Previous calibrations assumed a stationary proxy seasonality, usually toward spring (March‐April‐
May or April‐May‐June, e.g. Müller et al., 2011; Navarro‐Rodriguez et al., 2013; Smik et al., 2016). However,
some studies also found good correlations between the PIP25 index and sea ice in summer (July‐August‐
September, e.g. Su et al., 2022; Xiao et al., 2015) or autumn (October‐November‐December, e.g. Kolling
et al., 2020). In another study, a longer calibration interval spanning the full sea ice retreat period (March‐
September) similarly produced statistically significant results (Stoynova et al., 2013). The proxy seasonality
therefore remains poorly diagnosed.

In reality, the seasonal bias in the ln(PIP25) index is expected to vary with location as the timing of algal blooms is
determined by numerous factors, most notably light intensity and nutrient availability (e.g., Leu et al., 2015; Oziel
et al., 2019), and thus is asynchronous across the Arctic (e.g., Ji et al., 2013; Leu et al., 2011). The onset of ice
melt, dictated by temperature and regional atmosphere‐ocean dynamics (e.g., Horvath et al., 2021; Mortin
et al., 2016), also differs significantly across latitudes (e.g., Bliss & Anderson, 2018; Markus et al., 2009)
(Figure 2). The significant delay of these events from one region to another means that the ln(PIP25) indices
obtained from different cores likely reflect sea ice conditions for different months of the year.

In order to constrain this spatially varying seasonality, we analyze published IP25 fluxes measured in sediment
traps across the Arctic by compositing fitted PDFs and the corresponding SIC records (Figure 4c). The resultant
PDF shows that, on average, IP25 release begins in May (>95% confidence), coincident with the average initial
sea ice breakup. The highest fluxes occur between June and August, concurrent with the main ice melt period,
corroborating a close link between IP25 deposition and sea ice thawing. For an Arctic‐wide static calibration, the
conventional calibration interval of March‐April‐May (supported by our model; see Section 4.2 for details) then
corresponds to the 3‐month interval before IP25 release, reflecting IP25 production in ice‐edge diatom blooms
prior to sea ice breakup. This suggests that IP25 in the sediments records the maximum SIC before sea ice
disintegration, that is, the ln(PIP25) index is biased towards the time interval immediately prior to local ice melt.

However, the timing of sea ice breakup differs significantly across the trap locations, with an offset of up to
3 months, and the bimodal distribution of the PDF indicates that fluxes happen in two distinct periods, both
supporting a spatially varying seasonal bias. To account for local differences in the timing of ice melt, we align
each time series to the month of the first SIC decrease leading to the minimum SIC of the year (Figure 4d). The
aligned PDF shows that IP25 release begins in the same month as initial sea ice breakup (>95% confidence), with
the flux peaks synchronized to the following one to 2 months. The tightened distribution indicates a more precise
calibration interval for each sample, which can be determined quantitatively as the 3‐month interval before the
first SIC decrease.

By identifying the proxy seasonality for every individual core, in place of an ambiguously defined ”seasonal” bias
for the whole Arctic, the spatially varying calibration allows for more accurate and consistent SIC reconstructions
across different regions, especially on geologic timescales. While the timing of sea ice breakup at each individual
site may have remained largely constant over the accumulation period of the core tops and the sediment traps, it
likely differed significantly further back in time under the influence of changing orbital configurations and
gateway geometries (e.g., Karami et al., 2021; Timm et al., 2008). It is then unreasonable to assume that a bias to
March‐April‐May SIC persists throughout the reconstruction period.

For illustration of the non‐stationarity in proxy seasonality through time, SIC simulations are obtained from the
TraCE‐21ka data set, which employs the National Center for Atmospheric Research Community Climate System
Model version 3 (NCAR CCSM3) to reconstruct the transient climate evolution over the last 21 ka (Liu
et al., 2009). The monthly average ICEFRAC (equivalent to SIC) for the pre‐industrial, Mid Holocene, and Last
Glacial Maximum experiments are used to derive climatologies, from which the month of the first SIC decrease is
calculated. As shown in Figure 5, the calendar month in which SIC loss is first observed at any given location
shifts with time. Thus, the intimately linked proxy seasonal bias is also expected to change, and the necessity of a
varying calibration becomes evident.
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3.4. Other Environmental Drivers of ln(PIP25)

While sea ice conditions evidently control the timing and spatial distribution of IP25 and sterol production, other
potential environmental drivers should not be neglected. For example, salinity is known to affect the productivity
of sea ice algae (e.g., Glud et al., 2007; Gosselin et al., 1986; Ralph et al., 2007), with laboratory culture ex-
periments showing that sea ice diatom growth decreases with reduced salinity (Grant & Horner, 1976; Søgaard
et al., 2011; Zhang et al., 1999). Hyposaline conditions caused by freshwater discharge from large rivers have
been implicated in progressively lower IP25 concentrations measured near estuaries in the Kara and Laptev Seas
(Xiao et al., 2013) and a fjord in Northeast Greenland (Belt, 2018; Ribeiro et al., 2017). Based on ratios between
IP25 and C25‐HBI diene, Xiao et al. (2013) suggested that saturation in HBIs may decrease with lower sea surface
salinity (SSS), but research on IP25 sensitivity to salinity remains limited. A subsequent study by Limoges
et al. (2018) found an increase in the abundance of IP25 producers with a slight decrease in bottom sea ice salinity,
but did not preclude negative impacts of low salinity on IP25 synthesis.

In our data set, a number of outlying samples with low ln(PIP25) values and high corresponding SIC originate
from locations with low SSS values of < 7 g kg− 1 (Figure 3b). When analyzing ln(PIP25) with SSS, we find
suggestions of a logarithmic relationship between the two under ice‐covered conditions, with ln(PIP25) decreasing
exponentially as SSS lowers (Figure 6a). In such cases, SSS appears to overtake SIC as the limiting factor for IP25
production, hindering direct interpretation of sea ice conditions from ln(PIP25) values. As SSS rises to normal
levels, this trend disappears and is replaced by a strong negative correlation between ln(PIP25) and SSS, likely an
expression of the co‐variation between SSS and SIC. As relatively sparse data exist for hyposaline settings,
further research is needed to establish a robust relationship between SSS and ln(PIP25).

Figure 5. Spatial variations in the timing of the first sea ice concentration (SIC) decrease, derived from the TraCE‐21ka
experiments for the (a) pre‐industrial, (b) Mid Holocene, and (c) Last Glacial Maximum.

Figure 6. (a) Mar‐Apr‐May sea surface salinity (SSS) versus ln(PDIP25), with dashed line indicating change point (SSS ∼
21.74). (b) SSS versus model residuals. Colors denote sea ice concentration (SIC).
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To disentangle the influence of low SSS on ln(PIP25) from that of SIC in our calibration, we conduct change point
analyses on the data set sorted by SSS using the ruptures package (Truong et al., 2020) (see Figure S4 in Sup-
porting Information S1 for details). The change point is interpreted as a threshold below which SSS overshadows
SIC as the dominant predictor of ln(PIP25). For an Arctic‐wide calibration to March‐April‐May, the change point
occurs at SSS ∼ 21.74 g kg− 1 for both PDIP25 and PBIP25. For a spatially varying calibration to the 3‐month
interval before the first SIC decrease, the threshold is detected at SSS ∼ 21.26 g kg− 1.

More generally, as summarized by Belt and Müller (2013), sympagic algal blooms are influenced by a range of
factors, including nutrient supply in the water column (e.g., Arrigo et al., 2010; Gradinger, 2009; Leu et al., 2015;
Oziel et al., 2019; Rózańska et al., 2009), light availability (which is in turn regulated by the thicknesses of the ice
and snow cover; e.g. Arrigo et al., 2010; Leu et al., 2015;Mundy et al., 2005;Oziel et al., 2019), and bottom icemelt
rate (Castellani et al., 2017; Lavoie et al., 2005). Their effects on the production of IP25 specifically, however, have
not been studied in detail. Furthermore, as normalization by phytoplankton‐derived sterols in the ln(PIP25) index
negates, to a certain extent, the effects of nutrient levels and light intensity on biomarker synthesis (Müller
et al., 2011; Stoynova et al., 2013), and considering that sea surface temperature co‐varies with SIC, the sensitivity
of ln(PIP25) to these variables is likely low. We therefore leave the identification of additional environmental
predictors and their incorporation into the ln(PIP25) calibration for future work.

4. Bayesian Calibration Model
4.1. Model Design

A Bayesian proxy system model (BaySIC) is developed to relate ln(PIP25) to SIC based on core‐top observations.
Since the calibration is based on the spatial relationship between ln(PIP25) and its environmental drivers, and is
applied to predict temporal changes in these values, the model assumes ergodicity (Tierney & Tingley, 2014), that
is, the response of the proxy to different environments across space is taken to represent its response to envi-
ronmental changes over time.

To account for the nonlinear relationship between ln(PIP25) and SIC, as well as to respect the inherent limit of SIC
between 0 and 1, the core‐top data may be described with a logistic function:

SIC =
1

1 + exp − (β0 + β1 ln(PIP25))
, (3)

where SIC and ln(PIP25) are vectors representing the core‐top data, β0 is the intercept, and β1 is the slope.
However, a regression model in this form considers SIC as a function of ln(PIP25), which contradicts the natural
causal relationship between the proxy and its environmental predictors. In nature, SIC serves as the predictor
variable for ln(PIP25). Assuming that the prediction errors are normally distributed, the relationship can be
expressed as follows:

ln(PIP25 i)∣β0, β1, ϕ ∼N(g(SICi), ϕ), (4)

where PIP25i denotes the core‐top sample, SICi denotes the corresponding SIC data, g(x) = − ln( 1
x − 1) − β0
β1

is the
inverse of Equation 3, and ϕ is the variance, which is introduced by uncertainties in the SIC observations. Thus,
we obtain the forward model in the following form:

ln(PIP25i) =
− ln( 1

SICi
− 1) − β0

β1
+ ϵi, (5)

ϵi ∼N(0, ϕ), (6)

where ϵi represents the residual error associated with each sample. The inverse logistic function (Equation 5)
has a domain of (0, 1), which allows the transformation of SIC data within the same range. As SIC approaches
0, ln(PIP25) decreases exponentially; as SIC approaches 1, ln(PIP25) increases exponentially.
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The model parameters (β0, β1, and ϕ) are inferred using a Bayesian framework. Instead of a single estimate for
each parameter, Bayesian analyses yield probability distributions (posteriors), which serve to quantify the un-
certainties of model predictions. The posteriors are derived from (a) the priors, which are assigned to reflect the
current scientific understanding of the parameters, and (b) the likelihood, which is computed from the data given
the parameters. Therefore, the posteriors represent updated beliefs of the parameters that are informed by the data,
which, in our case, consist of the core‐top ln(PIP25) values and their corresponding satellite SIC observations.
Accordingly, their spread reflects uncertainties in both the data and the calibration.

To the best of our knowledge, there exists no published nonlinear calibration for ln(PIP25) that can provide a basis
for prior expectations for the regression coefficients. Hence, uninformative priors are used such that the posteriors
are predominantly influenced by the data. The normal distribution is chosen for its real‐valued, unbounded
domain (i.e., β ∈ R), and is centered around 0 so as not to favor positive or negative values a priori. For variance,
a prior constrained to positive real numbers is required (i.e., ϕ ∈ R+); the inverse gamma distribution is
conventionally employed in Bayesian models for this purpose. The distributions are defined as follows:

β0 ∼N(0,3), (7)

β1 ∼N(0,3), (8)

ϕ ∼ IG(2,0.5); (9)

Using larger prior standard deviations in sensitivity tests does not result in significant changes in the posteriors,
indicating that the model is robust to the choice of priors.

Since our 22‐year SIC data set constitutes only a fraction of the time represented in most samples, and its grids do
not perfectly match the areas integrated by the core tops, we further treat the SIC corresponding to each ln(PIP) as
an unknown. Under the Bayesian framework, the distribution associated with each SIC parameter thus simulates
the year‐to‐year sea ice variability over the (unknown) time and area integrated by the core top.

The prior for each SIC parameter is defined by a beta distribution, chosen for its flexibility to accommodate vastly
different distributions within the fixed limits of 0 and 1, as follows:

SICi ∼ Beta(αi,βi), (10)

αi =
μi
IQRi

, (11)

βi =
1

IQRi
− αi, (12)

where μ and IQR are the mean and interquartile range of the 1979–2000 SIC data set, respectively. This centers
the prior distribution on the mean with a variance proportional to the IQR, effectively assigning smaller regression
weights to samples with higher SIC variability. The Kullback–Leibler divergence, a measure of the difference
between probability distributions (Kullback & Leibler, 1951), is small across all SIC parameters, indicating that
the simulated distributions provide good approximations of the empirical distributions (Figures S5 and S6 in
Supporting Information S1). SIC values of zero are assumed to be under the satellite detection limit and are
replaced by the minimum non‐zero SIC value in the data set.

In the forward model, the spatially varying seasonal bias in ln(PIP25) is addressed by matching each core‐top
sample with the climatological mean SIC of the calibration interval deduced from sediment trap studies, that
is, the 3 months before the first SIC decrease (Figure 4d). This means that model‐estimated SIC values for
different months will be used to infer ln(PIP25) values at different locations. For example, in high latitude regions
where sea ice breakup does not begin until July, the calibration interval will be May‐June‐July. As the timing of
sea ice retreat changes through time, the model also accommodates temporal changes in proxy seasonality,
facilitating its application in geologic time. The month of the first SIC decrease at a given location is determined
by rounding the monthly climatologies to the nearest 0.05 and finding the month of the maximum SIC leading to
the minimum. This requires seasonally varying SIC and fails where SIC remains constant throughout the year,
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such as locations that are always ice‐free or ice‐covered. For these cases, the month of the first SIC decrease is
taken from the nearest grid with variable SIC, assuming that any IP25 deposition occurs either by lateral transport
or during sea ice thinning which would be concurrent with nearby SIC decrease.

The likelihood is then calculated by:

L( ln(PIP25) ∣ β0, β1, ϕ, SIC) = ∏
n

i=1
P( ln(PIP25i) ∣ β0, β1, ϕ, SICi), (13)

where n is the total number of core tops, and P(·) is used to denote PDFs.

By Bayes' Theorem, the following proportionality may be obtained:

P(β0, β1, ϕ, SIC ∣ ln(PIP25))∝L( ln(PIP25) ∣ β0, β1, ϕ, SIC) P(β0, β1, ϕ, SIC), (14)

where P(β0, β1, ϕ, SIC) is the product of all the prior distributions, with the assumption that the parameters
are independent of one another. Given the large number (n + 3) of parameters, we use the t‐walk (Christen
& Fox, 2010), a Markov chain Monte Carlo sampler to infer the posteriors for all parameters. The ensemble
of parameters obtained, representing possible calibration curves given the data, can then be used to calculate
the predictive distribution, which integrates over model uncertainties and provides a probabilistic estimate of
ln(PIP25) given any SIC value.

Based on change point analyses (Truong et al., 2020), we exclude samples with low SSS in our calibration to
focus on the relationship between SIC and ln(PIP25). Therefore, the model can only predict ln(PIP25) from SIC
when and where SSS meets the determined threshold, which differs slightly depending on the calibration interval.
Should the proposed logarithmic relationship between SSS and ln(PIP25) be independently verified in the future,
we suggest a pre‐treatment of samples from hyposaline settings to correct for the additional influence.

Since the logistic function describes a one‐to‐one relationship between SIC and ln(PIP25), the forward model can
be inverted to estimate past SIC directly from downcore ln(PIP25) values (Equation 3). Through Bayesian
inference, the same ensemble of parameters is used to propagate calibration uncertainties into the predictions.
However, as the timing of the first SIC decrease is unknown in the inverse case, a spatiotemporally stationary
proxy seasonality must be assumed. We experiment with different calibration intervals to determine the optimum
interval for such an Arctic‐wide static calibration. Results from the inverse model should also be analyzed with
salinity data wherever possible; if SSS is below the detected threshold for the calibration, the model may be prone
to underestimate SIC.

4.2. Model Results

The BaySIC model and its residuals are shown in Figure 7, and its metrics in Table 1. The relationship between
SIC and ln(PIP25) is well described by the inverse logistic function. The spatially varying calibration explains
74% of the variance in the ln(PDIP25) index calculated with our core‐top biomarker database, showing a marked
improvement from the previous pan‐Arctic calibration (Xiao et al., 2015). The model has a root mean square error
of prediction of 0.96, which is reasonable given the spread of the core‐top data, particularly in locations with more
variable SIC. As these samples are down‐weighted in the regression, the calibration curve is largely determined
by data points with SIC close to 0 or 1. In general, there exists no strong spatial pattern in the residuals, supporting
model application across the Arctic. This is not the case in sensitivity tests that include samples from Stoynova
et al. (2013) and Su et al. (2022) (Figure S7 in Supporting Information S1), further justifying their exclusion from
our calibration database.

The posteriors for the regression coefficients have significantly smaller spreads than the priors (Figure S8 in
Supporting Information S1), indicating the dominance of the likelihood function, that is, the intercept and slope of
the model are mostly informed by the core‐top data. Similar results are obtained using the full satellite SIC record
(1979–2022) or historical data sets (1950–2000 and 1950–2017) to inform the priors (see Table S2 in Supporting
Information S1 for details), further supporting the model's robustness to different temporal frameworks. The
posterior for variance shows an increase from the prior, reflecting data constraints on the precision of the model.
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Figure 7. Calibrations (left) for ln(PDIP25) using the sea ice concentrations (SIC) of (a) the average of the 3 months before the
first SIC decrease and (b) Mar‐Apr‐May, and the corresponding spatial distributions of residuals (right). Bubble size is
inversely proportional to the interquartile range of the SIC over the 22‐year calibration period. HDI = highest density
interval.

Table 1
Calibration Results of Different ln(PIP25) Indices to the Sea Ice Concentration (SIC) of Different Months (e.g.,
MAM = Mar‐Apr‐May)

3 months before first
SIC decrease MAM AMJ Apr May

ln(PDIP25)

R2 0.74 0.74 0.72 0.73 0.70

RMSEP 0.96 0.96 1.01 0.99 1.04

ln(PBIP25)

R2 0.63 0.63 0.59 0.63 0.57

RMSEP 1.47 1.48 1.54 1.47 1.58

SSS threshold 21.26 21.74 21.45 23.05 21.61

Note. RMSEP = root mean squared error of prediction.
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Uncertainties in both the observations and the calibration can be quantified using the 95% highest density interval
(HDI), which is the smallest region that contains 95% of the posterior distribution, representing the most credible
values. In this calibration, the 95% HDI spans approximately 3 ln(PIP25) units. Since the inverse logistic function
is characterized by a gently‐sloped body between steeply‐sloped tails, the BaySIC model is more sensitive to
extreme than intermediate SIC values. This means that in the inverse framing, where downcore ln(PIP25) are used
to reconstruct SIC, the uncertainties associated with extreme ln(PIP25) values will be smaller than those asso-
ciated with intermediate ln(PIP25) values (see Section 5 for illustrated examples). As the core‐top data show that
ln(PIP25) ∼ − 4 can result from the full range of SIC, SIC reconstructions from these values are highly uncertain
and should be interpreted with caution. Away from this step‐like transition, the model can distinguish between
ice‐free and ice‐covered conditions with relatively high certainty. Moreover, within the existing core‐top data-
base, there is a ∼ 1:4 imbalance of paired IP25‐sterol data collected from seasonally ice‐free (SIC ∼ 0) versus
seasonally ice‐covered (SIC ∼ 1) locations (Figure 7). Increasing data coverage near the seasonally ice‐free
transition would provide more constraints on the lower end of the slope.

Following the removal of core tops matched with low SSS, no significant trend is observed between SSS and the
residuals among the remaining samples (Figure 6b). Since the influence of salinity on ln(PIP25) is only apparent at
anomalously lowSSS levels, the filtering procedure is deemedmore suitable than the addition of a second predictor
in the calibration model. Analyses with SST and nutrient data similarly show no correlation between the residuals
and these environmental variables (Figure S9 in Supporting Information S1), suggesting that they are not major
drivers of ln(PIP25). Future work is needed to identify the source(s) of the variance left unexplained by BaySIC.

Similar calibration curves are obtained for ln(PBIP25), but some structures in the spatial distribution of residuals
are discernible (see Appendix A). In particular, strong negative residuals exist to the northeast of Svalbard, where
low ln(PBIP25) values are associated with ice‐covered conditions (and normal SSS levels). As Belt et al. (2015)
pointed out in their original study, additional brassicasterol may be contributed by non‐pelagic sources, which
would explain the lower‐than‐expected IP25‐brassicasterol ratios. However, as these core tops lack corresponding
dinosterol measurements, it is possible that their ln(PDIP25) values are equally low, which would point to other
causes of discrepancy. BaySIC incorporates this unknown source of uncertainty by taking into account these
anomalous samples and converging to a higher variance. Thus, the ln(PBIP25) calibration has a greater uncertainty
range that reflects potential additional influences on the proxy (see examples below).

For an Arctic‐wide static calibration, March‐April‐May appears to be the optimum calibration interval, with an
alternative calibration to April‐May‐June yielding similar results. This is consistent with previous calibrations
and corroborates the interpretation that ln(PIP25) reflects SIC shortly before sea ice breakup (discussed in
Section 3.3). Although this model performs similarly to the spatially varying model in replicating core‐top
samples, we argue that the consideration of a variable proxy seasonality remains important for accurate pre-
dictions. By identifying ln(PIP25) as recording the maximum SIC before sea ice disintegration, the model outputs
for the corresponding months may be used to reconstruct the maximum sea ice extent, rather than the average sea
ice conditions over a loosely defined Arctic spring.

To test this hypothesis and to evaluate model performance, we apply BaySIC to out‐of‐sample SIC observations
from locations with paired IP25‐sterol sediment trap data. The average SIC of the 3 months before the first SIC
decrease during the sampling period are supplied to the model to generate probabilistic ln(PIP25) estimates. For
the traps at ∼75° latitude (Gal et al., 2022), this interval is March‐April‐May. For those at ∼83° latitude (Nöthig
et al., 2020), it is April‐May‐June. The results are compared against the observed ln(PIP25) values, which are
calculated using the total biomarker fluxes measured over the sampling period. Overall, there is good agreement
between the BaySIC predictions and sediment trap data, with the observations always falling within the 95% HDI
(Figure 8). The maximum a posteriori (MAP) estimation, representing the mode of the predictive distribution,
converges closely with the observation.

We repeat the exercise using the Arctic‐wide static March‐April‐May calibration to assess the potential impacts of
assuming stationary proxy seasonality. For the two traps located at a higher latitude, this results in a 1‐month
offset from the seasonal bias diagnosed by the spatially varying model. In both cases, the prediction deviates
further from the observation than that obtained above by ∼0.11 ln(PIP25) units (not shown). This supports our
hypothesis that the consideration of a dynamic proxy seasonality yields more accurate forward modeling results
and, despite relatively small differences derived here from modern observations, is consequential in deep‐time
applications (discussed in Section 3.3).
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5. Palaeoclimate Applications
5.1. Quantitative SIC Reconstruction From Downcore Biomarker Measurements

By establishing a fully quantitative relationship between SIC and the new ln(PIP25) index, BaySIC overcomes the
longstanding limitation to semi‐quantitative SIC reconstruction of the original PIP25 index. To exemplify its
palaeoclimate applications, we apply BaySIC to a sediment core in northeastern Fram Strait (MSM5/5‐712‐2; 78°
54.94ʹN, 6°46.04ʹE; 1,487 m; Budéus, 2007) that has been analyzed for both biomarkers and dinoflagellate cyst
(dinocyst) assemblages. The published IP25 and sterol measurements (Cabedo‐Sanz & Belt, 2016; Müller
et al., 2012a, 2012b; Müller & Stein, 2014a, 2014b) are placed on the same chronology as the palynological data
(Falardeau et al., 2019) to permit comparisons between the records, which extend into the Last Glacial Maximum
(LGM; 23 ka).

Paired IP25‐dinosterol and IP25‐brassicasterol measurements are supplied to the inverse model to estimate past
SIC from ln(PDIP25) and ln(PBIP25), respectively. Within BaySIC, all biomarker measurements are treated with
the best estimate of the detection limit prior to calculating the ln(PIP25) index (discussed in Section 3.1). Based on
reconstructions presented by Falardeau et al. (2018), SSS at the core site fluctuated between 24 and 36 psu in the
last 23 ka, remaining well above the determined threshold (Table 1). Thus, salinity is assumed to have negligible
influence on the biomarker records presented here.

Overall, the SIC reconstructions using either index show good agreement with each other (Figures 9a and 9b). For
the LGM, both indices reconstruct near‐complete ice cover, with amplified SIC fluctuations in the ln(PDIP25)
reconstruction. Partial ice cover persisted during Heinrich event 1 and the Bølling‐Allerød, but higher SICs are
reconstructed from ln(PBIP25) in several intervals. These discrepancies are due to differences in the IP25‐sterol
ratios and are also found in reconstructions using the original PIP25 index (see Section 5.2). Near‐identical trends
are obtained for the Younger Dryas (YD) and throughout most of the Holocene, only diverging in the last 2 ka.
The inconsistencies here are due to the integration of the Cabedo‐Sanz and Belt (2016) data set, which reports
lower IP25 concentrations than (and similar brassicasterol concentrations as) measurements at the same depths
provided by Müller et al. (2012a, 2012b), and does not include data for dinosterol. Near the top of the core, rapid

Figure 8. Predictions of the spatially varying forward model versus observations from sediment traps of (a, b) ln(PDIP25) and
(c, d) ln(PBIP25). Trap locations are shown in Figure 2. HDI = highest density interval.
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sea ice loss is inferred from both indices and the reconstructions converge toward the modern March‐April‐May
SIC observed at the core site.

The 95% HDI for both reconstructions are large (given site MSM5/5‐712‐2's location near the MIZ), but realistic
considering the various sources of uncertainty incorporated. As explained in the previous section, the uncertainty
ranges associated with extreme ln(PIP25) values are smaller, for example, during the YD when the proxy strongly
indicates ice‐covered conditions. In addition, reconstructions based on ln(PDIP25) feature less uncertainty than
those derived from ln(PBIP25), which reflects higher confidence in its correlation with SIC in the core‐top
calibration.

5.2. Comparison With Prior SIC Reconstruction Approaches

To illustrate the differences in SIC reconstruction via ln(PIP25) and the original PIP25 index, we apply previous
linear calibrations for the region of East Greenland and West Spitsbergen (Müller et al., 2011) to the same
biomarker data. As the core was divided into sections and analyzed separately, different c factors were employed
in the calculation of PIP25 by each study (Cabedo‐Sanz & Belt, 2016; Müller et al., 2012a, 2012b; Müller &
Stein, 2014a, 2014b). In order to use the published calibrations, we recalculate the PDIP25 and PBIP25 values based
on the c factors derived by Müller et al. (2011). The highly variable and somewhat arbitrarily defined c factor is an
inherent limitation of the original PIP25 index approach; by eliminating it from ln(PIP25), BaySIC enables
consistent proxy interpretation over space and time. Its applicability across the Arctic further removes the need for
a regional calibration, allowing quantitative proxy interpretation in locations where it was previously not possible.

Unlike BaySIC, the linear regression model takes SIC beyond 0 and 1 at extreme PIP25 values; we place additional
limits on the reconstructions to restrict them to the natural range of the parameter. In general, BaySIC predictions
are consistent with the results of the adapted PIP25 index approach (Figures 9a and 9b), which reflects the
common biomarker data used for both indices. BaySIC tends to estimate greater magnitude SIC changes than the
linear regression model, for instance, the rapid decrease from full ice cover at the end of the LGM. Similarly, the
reconstructions diverge from Mid Holocene onwards, with BaySIC suggesting near‐complete ice cover in contrast
to the partial ice cover indicated by the linear calibration model. This is an expression of the demonstrated
nonlinearity of the proxy: at the transition between ice‐covered and ice‐free conditions, BaySIC captures small
shifts in ln(PIP25) and deduces relatively large SIC changes.

Between 18 and 19 ka, completely ice‐free conditions are reconstructed from the original PIP25 indices, whereas
BaySIC estimates partial ice cover. These inconsistencies arise from the zero IP25 concentrations measured for the

Figure 9. Reconstructions of Mar‐Apr‐May sea ice concentration (SIC) at site MSM5/5‐712‐2 based on paired (a) IP25‐
dinosterol and (b) IP25‐brassicasterol measurements (Cabedo‐Sanz & Belt, 2016; Müller et al., 2012a, 2012b; Müller &
Stein, 2014a, 2014b), using the BaySIC inverse model and the regional linear calibrations presented by Müller et al. (2011).
HDI = highest density interval. (c) Reconstruction of annual SIC at the same site via dinocyst assemblages from Falardeau
et al. (2018). Circles denote modern (1979–2000) SIC observed at the core site. YD = Younger Dryas; BA = Bølling‐Allerød.
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sediment samples, leading to zero PIP25 values indicative of open ocean conditions. However, based on the low
corresponding sterol concentrations, Müller and Stein (2014a, 2014b) concluded that the biomarkers record per-
manent ice cover instead. This has conventionally been handled by designating a PIP25 value of 1 to samples with
IP25 and sterol concentrations under or near their limit of detection (Belt, 2018). BaySIC results show that once the
biomarker measurements are treated with the detection limit, they can be readily related to the full range of SIC via
the ln(PIP25) index (Section 4.2), suggesting that the relative biomarker abundances remain informative even when
absolute abundances are low. As reported IP25 and sterol concentrations both tend to 0, ln(PIP25) approaches − 2.35
to − 3.06, depending on the sterol and the unit of measurement used. According to the calibrations, these values
would indicate mostly ice‐covered conditions, in agreement with previous interpretations of the proxy system. As
biomarker concentrations increase, their ratio becomes less sensitive to the added minimum concentrations. The
BaySIC approach maintains the separation between observation and interpretation to avoid introducing additional
bias into SIC reconstructions.

Despite similarities in the reconstructions, the major breakthrough made by BaySIC lies in its fully quantitative
proxy interpretation. Owing to challenges in quantifying the original PIP25 index, it has traditionally been used to
reconstruct sea ice only semi‐quantitatively by categorizing sea ice conditions and matching each to a range of
index values. In their original reconstruction, Müller et al. (2012a, 2012b) distinguish between extended, mar-
ginal, and variable/less ice cover, as well as ice‐free conditions, instead of deriving SIC from the PIP25 index as
attempted here. With BaySIC, ln(PIP25) is mapped to the full, continuous range of SIC, clarifying the proxy
interpretation and facilitating direct comparison with model outputs. Its Bayesian framework further quantifies
the uncertainties, which have been lacking in previous linear calibrations for PIP25. The resultant probabilistic
estimates may help reconcile different proxy records and achieve more robust palaeoclimate reconstructions.

As an example, we compare BaySIC results against an independent sea ice reconstruction using dinocyst as-
semblages (Falardeau et al., 2018). The reconstruction is converted from ice‐covered months per year, where ice
cover is defined as SIC >0.5, to annual SIC (Figure 9c); a good correlation has previously been shown between
the two variables (de Vernal, Rochon, et al., 2013). The average SIC reconstructions are therefore expected to be
lower and less variable than those from ln(PIP25) and PIP25, which are seasonally biased. A detailed analysis of
the record is presented in the original study; here, we highlight several key differences between the proxy
reconstructions.

During the LGM, persistent ice cover is reconstructed from ln(PIP25), followed by a rapid transition to mostly ice‐
free conditions at 19 ka. An opposite trend is shown by dinocyst assemblages, which suggest little to no ice cover
throughout the LGM, succeeded by partial ice cover. The contradiction is likely due to limitations of the modern
analogue technique employed in quantitative sea ice reconstruction from dinocyst assemblages: as Falardeau
et al. (2018) pointed out, the best matches found for their LGM samples were from a location that experienced
distinct hydrographical conditions to those expected for the core site. Without suitable modern equivalents, the
resultant SIC reconstructions may be inaccurate. In contrast, the diverse settings in which IP25 and the sterols have
been detected and the clear relationship between the ln(PIP25) index and SIC renders the proxy applicable in
different palaeo‐environments.

Both proxies record a relatively short‐lived SIC increase at 14 ka, followed by partial ice cover during the Bølling‐
Allerød. Evidence of the YD cooling is similarly clear in all reconstructions, with the ln(PIP25) indices indicating
a sharper SIC rise to completely ice‐covered conditions, compared to a slower and more modest increase shown
by dinocyst assemblages. The elevated SIC persisting into Early Holocene registered by the dinocyst assemblages
is not discernible in ln(PIP25) reconstructions. From Mid to Late Holocene, the reconstructions further diverge: a
steady SIC increase is reconstructed via ln(PIP25), following the decline in the orbital forcing in the Northern
Hemisphere, while the dinocyst assemblages suggest relatively stable, low annual SIC. As ln(PIP25) tracks the
maximum SIC, sea ice changes in seasonally ice‐covered locations are more readily observable, providing more
precise insights into past sea ice conditions.

5.3. Sea Ice in Past Warm Periods

The new calibrations offer opportunities to reevaluate available proxy records for probabilistic insights into Arctic
sea ice responses to past warming. For additional examples, we apply BaySIC to sites with paired IP25‐sterol
measurements dated to the Last Interglacial (LIG, ∼130 − 118 ka) and the mid‐Pliocene Warm Period (mPWP,
∼3.3 − 3.0 Ma). These data have previously been interpreted either qualitatively or semi‐quantitatively
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(summarized in Table 2). In the absence of reliable salinity data for each site and period, we ignore, for illustrative
purposes, the possibility of drastic SSS changes. The published biomarker concentrations (Stein et al., 2017a,
2017b, 2017c, 2018; Clotten et al., 2017; Knies et al., 2014; Kremer et al., 2018; Steinsland et al., 2023a, 2023b)
are averaged over the target interval as inputs for the inverse model, yielding a non‐Gaussian PDF for each SIC
reconstruction (Figure 10). This means that the HDIs are not centered at the MAP estimation, that is, there is a
higher probability for SIC to fall closer to one end of the spectrum (also seen in Figure 9), and reflects that most of
the ocean is either ice‐covered or ice‐free, such that the chances of the core site being within the MIZ is rela-
tively low.

For the LIG, BaySIC predicts relatively high (∼0.7 or more) March‐April‐May SIC for PS2200‐5, PS93/006‐1,
and GS16‐204‐22CC‐B, supporting the presence of sea ice in spring as formerly inferred for these sites (Kremer,
Stein, Fahl, Bauch, et al., 2018; Stein et al., 2017a, 2017b, 2017c; Steinsland et al., 2023). The tight PDF obtained
for PS2200‐5 in particular indicates high confidence in the interpreted ice‐covered conditions, which is broadly
consistent with this site's northerly location. Slightly more sea ice coverage is estimated for GS16‐204‐22CC‐B
than in the original study, which considered the biomarkers individually rather than combined in an index.
Compared with the traditional approach of classifying sea ice conditions, with categories like the MIZ spanning a
wide range of SIC, the redefined ln(PIP25) index and its calibration to SIC allow more specific reconstructions.

BaySIC estimates very low (∼0.1 or less) March‐April‐May SIC for PS92/039‐2, contradicting the previously
inferred perennial ice cover (Kremer, Stein, Fahl, Ji, et al., 2018). This disagreement stems from the setting of
PIP25 to 1 for samples with low IP25 and brassicasterol concentrations in the original study, as opposed to the
detection limit treatment implemented within BaySIC (discussed in Section 5.2). By considering the ratios of the
biomarkers via ln(PIP25), our model suggests that this site had more likely experienced ice‐free conditions during
the LIG. For PS2138, the BaySIC prediction via ln(PBIP25) corroborates sea ice conditions deduced from PBIP25
by Stein et al. (2017a, 2017b, 2017c), but diverges from the much higher SIC predicted via ln(PDIP25). Further
investigation is needed to explain this discrepancy. One potential cause is additional brassicasterol sources
(discussed in Section 2.1), in which case the local SIC over the LIG would have been previously underestimated.
As BaySIC provides the full probability distributions for each reconstruction, it is also possible to determine the
most probable SIC as indicated by all biomarkers by considering the results obtained via both sterols.

Turning to the mPWP, a similar divergence is observed in predictions for ODP151‐907A: the ln(PDIP25) record
strongly indicates SIC to be close to 1, whereas the ln(PBIP25) record provides only weak constraints on SIC.
Clotten et al. (2018) attributed the decoupling of the two sterols during this period to non‐marine sources of
brassicasterol, which would lend more credibility to the fully ice‐covered scenario suggested by ln(PDIP25). The
ODP910C site is estimated to be ice‐free based on ln(PBIP25), consistent with the former interpretation (Knies
et al., 2014). However, dinosterol data is not available for this core. Given the occasional but significant conflicts
between SIC reconstructions employing different sterols, interpretations based on only one of the two should be
treated with extra caution.

Table 2
Previous Interpretation of Sea Ice Conditions During the Mid‐Pliocene Warm Period (mPWP) or the Last Interglacial (LIG)
at Each Site

Core Previous sea ice interpretation Study

mPWP

ODP910C Similar to the modern summer minimum Knies et al. (2014)

ODP151‐907A Ice‐covered in spring, ice‐free in summer Clotten et al. (2018)

LIG

PS2200‐5 Perennial ice cover Stein et al. (2017a, 2017b, 2017c)

PS2138‐2 Spring/summer SIC of ∼20% or less Stein et al. (2017a, 2017b, 2017c)

PS92/039‐2 Perennial ice cover Kremer, Stein, Fahl, Ji, et al. (2018)

PS93/006‐1 Partially ice‐covered in summer Kremer, Stein, Fahl, Bauch, et al. (2018)

GS16‐204‐22CC‐B Marginal ice zone Steinsland et al. (2023)

Note. Core locations are shown in Figure 10.
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Direct comparisons of SIC across distant localities and distinct ages, as shown above, have previously proven
difficult due to issues pertaining to the c factor and regional correlations; BaySIC facilitates spatially and
temporally consistent sea ice interpretations, bringing a new perspective to ongoing debates about Arctic sea ice
extent during past warm periods. While recent studies have inferred seasonally ice‐free conditions in the LIG
indirectly through summer surface air temperature proxies (Sime et al., 2023), or qualitatively through the
presence of an open water proxy (Vermassen et al., 2023), more proxy‐based investigations are required to
confirm such proposition and to better define sea ice sensitivity to warming. In this regard, BaySIC provides a
critical step toward achieving direct and quantitative solutions.

6. Conclusions
A new ln(PIP25) index is proposed as a robust Arctic sea ice proxy that enables fully quantitative proxy re-
constructions of palaeo‐sea ice concentration (SIC). It improves on the established PIP25 index by eliminating the
use of a problematic balance factor, thus allowing direct comparisons across different Arctic regions and
consistent interpretations on longer (geologic) timescales. The ln(PIP25) index is found to correlate nonlinearly
with SIC, with an apparent additional influence of low sea surface salinity warranting further investigation.
Observations from published sediment trap studies indicate a proxy seasonal bias toward the interval preceding
local sea ice breakup, which varies over both space and time.

Using a pan‐Arctic core‐top biomarker database, we develop a set of Bayesian models, called BaySIC, to calibrate
the ln(PIP25) index to seasonal SIC. Calibration uncertainties are quantified and propagated to model predictions,
providing better constraints on model uncertainties. The spatially varying forward model considers differences in
the timing of ice melt, yielding more accurate proxy predictions while facilitating proxy‐model comparisons and
palaeoclimate data assimilation. An inverse model is also devised, by assuming an Arctic‐wide stationary bias to
March‐April‐May, to support direct SIC reconstructions from downcore ln(PIP25) measurements. Finally, we

Figure 10. BaySIC reconstructions of Mar‐Apr‐May sea ice concentration (SIC) for seven sites with mid‐Pliocene Warm
Period (mPWP, yellow) or Last Interglacial (LIG, white) paired IP25‐sterol measurements. The map shows their locations
and modern (1979–2000) SIC. MAP = maximum a posteriori (estimation); HDI = highest density interval.

Paleoceanography and Paleoclimatology 10.1029/2024PA005048

FU ET AL. 20 of 26

 25724525, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024PA

005048 by C
am

bridge U
niversity L

ibrary, W
iley O

nline L
ibrary on [28/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



provide a number of examples that demonstrate the applicability of BaySIC to palaeoclimate investigations,
which highlight the advances made in sea ice reconstruction using IP25 and open‐water sterols.

As the first model of its kind, BaySIC represents an important step in translating the now well‐established sea ice
proxy into a quantified climate variable, opening up new possibilities for its use in constraining the long‐term
variability of Arctic sea ice, thereby improving our understanding of past and future climate changes. Future
research may provide more insights into the proxy system, including the identification of other environmental
factors affecting ln(PIP25), which may help explain the remaining variance in the index. Additional core‐top
biomarker data sets, especially from currently under‐sampled Arctic and sub‐Arctic regions, may further
strengthen the constraints on the calibration curves and their associated uncertainty ranges, enabling more robust
sea ice, and thus global climate, reconstructions.

Appendix A: Model Results for ln(PBIP25) Calibrations
Figure A1

Figure A1. Calibrations (left) for ln(PBIP25) using the sea ice concentrations (SIC) of (a) the average of the 3 months before
the first SIC decrease and (b) Mar‐Apr‐May, and the corresponding spatial distributions of residuals (right). Bubble size is
inversely proportional to the interquartile range of the SIC over the 22‐year calibration period. HDI = highest density
interval.
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Data Availability Statement
The core‐top biomarker database investigated for the development of BaySIC is available as Supporting Infor-
mation S1. The BaySIC software package (Python) is publicly available on GitHub via https://github.com/
CrystalCYFu/PyBaySIC with the Creative Commons Attribution‐NonCommercial 4.0 International License.
Both the software and the core‐top biomarker database investigated for its development are also archived in
Zenodo (Fu et al., 2025a, 2025b).
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